Solving transportation problems in Julia and JuMP
Shuvomoy Das Gupta
February 3, 2021
In this blog, we will discuss how to solve a simple transportation problem in JuMP+Julia, that exploits sparsity. This blog is based on an earlier notebook I created a few years ago. The blog is written using the package Weave.jl.
Table of contents
Introduction
What is a sparse data structure?
A sparse data structure is one that has a lot of zeros in it. If a matrix has many more zeros than nonzeros, then it is a sparse matrix.
Why do we need to exploit sparsity?
Sparsity in the input data increases with the dimension.
Exploiting sparsity
keeps the data size small
saves memory
reduces the running time
improves the efficiency of the model
How to exploit sparsity in Julia?
Define
structand create adictionaryor anarrayof it.
A test example: transportation problem
Consider a transportation problem which is going to be our test example:
Problem setup: Some products have to transported from origin cities to destination cities
Objective:
Minimize the total cost of shipment over all relevant routes
Decision Variables
Find the optimum amount of every product to be shipped from one city to another
Constraints
How much of a product a city can supply to other cities is fixed.
The amount of any product demanded by a city is also fixed.
The total amount of products shipped between every pair of different cities can not exceed a given limit.
Suppose there are ten cities and three products in our problem.
cities =
[
:BANGKOK; :LONDON; :PARIS; :SINGAPORE; :NEWYORK; :ISTANBUL; :DUBAI; :KUALALUMPUR; :HONGKONG; :BARCELONA
]
products =
[
:smartphone; :tablet; :laptop
] Defining types (structures) via struct
If we do not exploit sparsity, then number of ways we can ship the products from one city to other will be .
Clearly many of them will be redundant, because of reasons like
a product might not be needed by a city
a product might not be produced by a city etc.
We just need to consider relevant routes, where a product can be shipped from one production city to the other demand city. So a relevant route can be defined by 3 features:
a product
a city that produces that product
a city that demands that product
So, we define an struct Route as follows:
struct Route
p::Symbol # p stands for product
o::Symbol # o stands for origin
d::Symbol # d stands for destination
end Here the datatype Symbol is a special type of immutable string. Then we create an array of only relevant routes.
routesExample =
[
Route(:smartphone,:BANGKOK,:SINGAPORE);
Route(:smartphone,:BANGKOK,:NEWYORK);
Route(:smartphone,:BANGKOK,:ISTANBUL);
Route(:smartphone,:BANGKOK,:DUBAI);
] If we want to access th element of the array by typing in routes[i]. When we want to access the product name associated with the h element of the array, we can do so by typing routes[i].p.
routesExample[2] # Will give the second route
routesExample[4].d # Will give the demand city of the 4th route
Creating new arrays efficiently from existing arrays
Often we need to create new arrays, where the elements of them are extracted from some already existing array conditionally.
Consider the immutable type Supply.
struct Supply
p::Symbol # p stands for product name
o::Symbol # o stands for the origin city
end
We want to create an array suppliesExample, that contains all relevant product-city pairs, where the particular product is produced in that city. Clearly we can construct this array by plucking each product and corresponding city producing it from routesExample. This is how we do it efficiently:
Create an empty array of type
SupplyAdd elements to this array by
selecting the product and origin from the elements of
routespushing them one by one in
supplies
suppliesExample = Supply[] # Creates a 0 element array of immutable type Supply
for r in routesExample # For every element of the route route
push!(suppliesExample, Supply(r.p, r.o)) # pick the product and origin city and push it in supplies
end
suppliesExample
Efficiently constructing dictionary of structs
What is a dictionary? A dictionary is a data type which can be useful in exploiting sparsity.
Why is it needed? Often we might be interested to index a variable by a composite data type, rather than a number. For example, for the transportation problem in consideration, it would be more convenient to index the decision variables in the routes that are present. Let
be the set of all the routes that are relevant for the problem. So, we can define our decision variable such that for any , the quantity represents the amount of a product that is transported from city to city . From a data structure point of view, is a dictionary which
takes as its key and
has the value the optimum amount of the product to be shipped from city to city .
Efficiently constructing dictionary of structs. Suppose we want to create a dictionary called costRoutes. Every element of the dictionary costRoutes contains the value of shipping cost along a particular route belonging to the array routesExample. So,
the key to an element belonging to the dictionary is a specific route belonging to the array
routesExample, andthe value is the cost for that shipment.
Suppose the values of the costs are stored in an array named costCofExample.
costCofExample = [120; 205; 310; 45.0]
We create the dictionary costRoutes similar to an array:
we create an empty dictionary, and then
use the command
setindex!(name_of_dictionary, value, key) or name_of_dictionary[key]=value to add new elements in the dictionary one by one
costRoutesExample=Dict{Route, Float64}()# Create an empty dictionary
# where the key is Route and the value is Float64
for i in 1:length(routesExample)
costRoutesExample[routesExample[i]]=costCofExample[i]
# routesExample[i] is the key, and costCofExample[i] is the value
end
costRoutesExample
After the dictionary is initialized, we can access the cost associated with some route routes[i] by typing in costRoutes[routes[i]]
costRoutesExample[routesExample[4]]
Or we can input the description of the route itself:
routesExample[3]
costRoutesExample[Route(:smartphone,:BANGKOK,:ISTANBUL)]
Mathematical representation of the transportation problem
The problem is a classic transportation problem. We will consider the sparse representation of the problem. Let
Total amount of shipped product between each pair of cities cannot exceed .
The decision variable for this problem is , where
The optimization problem can be described as below:
Mapping of the mathematical symbols to JuMP
In the data file, the symbols in the model above are mapped as follows:
| Symbol | In the code | Comment |
|---|---|---|
cities | cities is an array of Symbols | |
products | products is an array of Symbols | |
routes | routes is an array of immutable type Route | |
orig | orig is a dictionary | |
dest | dest is a dictionary | |
suppliedAmount | suppliedAmount is a dictionary | |
demandedAmount | demandedAmount is a dictionary with key Customer and value Float64 | |
opt_prod | opt_prod is a dictionary and the variable in the problem | |
costRoutes | costRoutes is a dictionary | |
capacity | It is of type Float64 |
Data file
cities =
[
:BANGKOK; :LONDON; :PARIS; :SINGAPORE; :NEWYORK; :ISTANBUL; :DUBAI; :KUALALUMPUR; :HONGKONG; :BARCELONA
]
products =
[
:smartphone; :tablet; :laptop
]
capacity = 700
struct Route
p::Symbol # p stands for product
o::Symbol # o stands for origin
d::Symbol # d stands for destination
end
routes =
[
Route(:smartphone,:BANGKOK,:SINGAPORE);
Route(:smartphone,:BANGKOK,:NEWYORK);
Route(:smartphone,:BANGKOK,:ISTANBUL);
Route(:smartphone,:BANGKOK,:DUBAI);
Route(:smartphone,:BANGKOK,:KUALALUMPUR);
Route(:smartphone,:BANGKOK,:HONGKONG);
Route(:smartphone,:BANGKOK,:BARCELONA);
Route(:smartphone,:LONDON,:SINGAPORE);
Route(:smartphone,:LONDON,:NEWYORK);
Route(:smartphone,:LONDON,:ISTANBUL);
Route(:smartphone,:LONDON,:DUBAI);
Route(:smartphone,:LONDON,:KUALALUMPUR);
Route(:smartphone,:LONDON,:HONGKONG);
Route(:smartphone,:LONDON,:BARCELONA);
Route(:smartphone,:PARIS,:SINGAPORE);
Route(:smartphone,:PARIS,:NEWYORK);
Route(:smartphone,:PARIS,:ISTANBUL);
Route(:smartphone,:PARIS,:DUBAI);
Route(:smartphone,:PARIS,:KUALALUMPUR);
Route(:smartphone,:PARIS,:HONGKONG);
Route(:smartphone,:PARIS,:BARCELONA);
Route(:tablet,:BANGKOK,:SINGAPORE);
Route(:tablet,:BANGKOK,:NEWYORK);
Route(:tablet,:BANGKOK,:ISTANBUL);
Route(:tablet,:BANGKOK,:DUBAI);
Route(:tablet,:BANGKOK,:KUALALUMPUR);
Route(:tablet,:BANGKOK,:HONGKONG);
Route(:tablet,:BANGKOK,:BARCELONA);
Route(:tablet,:LONDON,:SINGAPORE);
Route(:tablet,:LONDON,:NEWYORK);
Route(:tablet,:LONDON,:ISTANBUL);
Route(:tablet,:LONDON,:DUBAI);
Route(:tablet,:LONDON,:KUALALUMPUR);
Route(:tablet,:LONDON,:HONGKONG);
Route(:tablet,:LONDON,:BARCELONA);
Route(:tablet,:PARIS,:SINGAPORE);
Route(:tablet,:PARIS,:NEWYORK);
Route(:tablet,:PARIS,:ISTANBUL);
Route(:tablet,:PARIS,:DUBAI);
Route(:tablet,:PARIS,:KUALALUMPUR);
Route(:tablet,:PARIS,:HONGKONG);
Route(:tablet,:PARIS,:BARCELONA);
Route(:laptop,:BANGKOK,:SINGAPORE);
Route(:laptop,:BANGKOK,:NEWYORK);
Route(:laptop,:BANGKOK,:ISTANBUL);
Route(:laptop,:BANGKOK,:DUBAI);
Route(:laptop,:BANGKOK,:KUALALUMPUR);
Route(:laptop,:BANGKOK,:HONGKONG);
Route(:laptop,:BANGKOK,:BARCELONA);
Route(:laptop,:LONDON,:SINGAPORE);
Route(:laptop,:LONDON,:NEWYORK);
Route(:laptop,:LONDON,:ISTANBUL);
Route(:laptop,:LONDON,:DUBAI);
Route(:laptop,:LONDON,:KUALALUMPUR);
Route(:laptop,:LONDON,:HONGKONG);
Route(:laptop,:LONDON,:BARCELONA);
Route(:laptop,:PARIS,:SINGAPORE);
Route(:laptop,:PARIS,:NEWYORK);
Route(:laptop,:PARIS,:ISTANBUL);
Route(:laptop,:PARIS,:DUBAI);
Route(:laptop,:PARIS,:KUALALUMPUR);
Route(:laptop,:PARIS,:HONGKONG);
Route(:laptop,:PARIS,:BARCELONA);
]
struct Supply
p::Symbol
o::Symbol
end
#Creating the array supplies
# --------
supplies = Supply[] # Creates a 0 element array of immutable type Supply
for r in routes
push!(supplies, Supply(r.p, r.o))
end
# Creating suppliedAmount dictionary
# --------------
#It might be better to create this as a dictionary, where the key is the
# element of the array supplies and the value is the corresponding supplied
#amount
suppliedAmount = Dict{Supply, Float64}()
for s in supplies
if s.p == :smartphone && s.o == :LONDON
suppliedAmount[s]=800
elseif s.p == :smartphone && s.o==:BANGKOK
suppliedAmount[s]=500
elseif s.p == :smartphone && s.o==:PARIS
suppliedAmount[s]=600
elseif s.p == :tablet && s.o==:BANGKOK
suppliedAmount[s]=1000
elseif s.p == :tablet && s.o==:LONDON
suppliedAmount[s]=1500
elseif s.p == :tablet && s.o == :PARIS
suppliedAmount[s]=1700
elseif s.p == :laptop && s.o == :BANGKOK
suppliedAmount[s]=150
elseif s.p == :laptop && s.o == :LONDON
suppliedAmount[s]=250
elseif s.p == :laptop && s.o == :PARIS
suppliedAmount[s]=400
end #if
end #for
struct Customer
p::Symbol
d::Symbol
end
# Creating customers array, which is an array of custom immutable Customer
# ---------
customers = Customer[]
for r in routes
push!(customers, Customer(r.p, r.d))
end
demandedAmount = Dict{Customer, Float64}()
for c in customers
#1
if c.p==:smartphone && c.d==:SINGAPORE
demandedAmount[c]=400
#2
elseif c.p==:tablet && c.d==:SINGAPORE
demandedAmount[c]=600
#3
elseif c.p==:laptop && c.d==:SINGAPORE
demandedAmount[c]=90
#4
elseif c.p==:smartphone && c.d==:NEWYORK
demandedAmount[c]=200
#5
elseif c.p==:tablet && c.d==:NEWYORK
demandedAmount[c]=650
#6
elseif c.p==:laptop && c.d==:NEWYORK
demandedAmount[c]=110
#7
elseif c.p==:smartphone && c.d==:ISTANBUL
demandedAmount[c]=100
#8
elseif c.p==:tablet && c.d==:ISTANBUL
demandedAmount[c]=300
#9
elseif c.p==:laptop && c.d==:ISTANBUL
demandedAmount[c]=0
#10
elseif c.p==:smartphone && c.d==:DUBAI
demandedAmount[c]=175
#11
elseif c.p==:tablet && c.d==:DUBAI
demandedAmount[c]=350
#12
elseif c.p==:laptop && c.d==:DUBAI
demandedAmount[c]=65
#13
elseif c.p==:smartphone && c.d==:KUALALUMPUR
demandedAmount[c]=550
#14
elseif c.p==:tablet && c.d==:KUALALUMPUR
demandedAmount[c]=950
#15
elseif c.p==:laptop && c.d==:KUALALUMPUR
demandedAmount[c]=185
#16
elseif c.p==:smartphone && c.d==:HONGKONG
demandedAmount[c]=200
#17
elseif c.p==:tablet && c.d==:HONGKONG
demandedAmount[c]=750
#18
elseif c.p==:laptop && c.d==:HONGKONG
demandedAmount[c]=150
#19
elseif c.p==:smartphone && c.d==:BARCELONA
demandedAmount[c]=275
#20
elseif c.p==:tablet && c.d==:BARCELONA
demandedAmount[c]=600
#21
elseif c.p==:laptop && c.d==:BARCELONA
demandedAmount[c]=200
end
end
costCof =
[34; 7; 8; 10; 11; 74; 9; 18; 5; 15; 6; 23; 81; 18; 20; 10; 9;
13; 25; 85; 13; 40; 17; 7; 16; 20; 80; 9; 24; 5; 15; 11; 23;
90; 22; 19; 15; 16; 15; 24; 100; 21; 37; 12; 9; 16; 14;
88; 9; 28; 13; 17; 8; 32; 100; 18; 28; 15; 18; 16; 30; 102; 15]
# Creating costRoutes dictionary which contains the costs of the relevant routes
costRoutes=Dict{Route, Float64}()
for i in 1:length(routes)
costRoutes[routes[i]]=costCof[i]
end
# Creating orig, which takes the product as the input and gives the set of origins of that product
orig = Dict{Symbol, Array}()
for i in 1:length(products)
dummy_array = Symbol[]
for j in 1:length(routes)
#println(i, j, products[i] == routes[j].p)
if products[i] == routes[j].p
push!(dummy_array, routes[j].o)
#println(orig[products[i]])
else
#println("Oops, something is not right")
end #if
end #for
orig[products[i]]=unique(dummy_array)
end #for
# Creating dest, which takes the product as the input and gives the set of destinations of that product
dest = Dict{Symbol, Array}()
for i in 1:length(products)
dummy_array = Symbol[]
for j in 1:length(routes)
#println(i, j, products[i] == routes[j].p)
if products[i] == routes[j].p
push!(dummy_array, routes[j].d)
#println(orig[products[i]])
else
#println("Oops, something is not right")
end #if
end #for
dest[products[i]]=unique(dummy_array)
end #for
Solve using JuMP
# Load packages
using JuMP, COSMO
# Model name
transpModel = Model(COSMO.Optimizer)
# Variable
@variable(transpModel, opt_prod[routes] >= 0)
# Objective
@objective(transpModel, Min, sum(costRoutes[l]*opt_prod[l] for l in routes))
# First Constraint
for pr in products
for org in orig[pr]
@constraint(transpModel, sum(opt_prod[Route(pr, org, de)] for de in dest[pr])
==
suppliedAmount[Supply(pr,org)])
end
end
#Second Constraint
for pr in products
for de in dest[pr]
@constraint(transpModel, sum(opt_prod[Route(pr, org, de)] for org in orig[pr])
==
demandedAmount[Customer(pr,de)])
end
end
# Final constraint:
for org in cities
for de in cities
if org!=de
@constraint(transpModel,
sum(
opt_prod[r] for r in routes
if r.o == org && r.d==de # This will be used as an filtering condition
)
<=
capacity)
else
continue
end
end
end
statusMipModel = optimize!(transpModel) # solves the model
println("The optimal objective value is: ", value.(trans))
println("The optimal solution is, trans= \n", objective_value(transpModel))
Converting .jmd file to .jl file To convert the .jmd file to a .jl file we run the following code:
using Weave
cd("C:\\Users\\shuvo\\Desktop") # directory that contains the .jmd file
tangle("Exploiting_sparsity_in_Julia_JuMP.jmd", informat = "markdown") # convert the .jmd file into a .jl file that will contain the code