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Take home messages
• First-order methods are very popular to solve large-scale optimization + ma-

chine learning problems
• We want to find the optimal≡fastest first-order methods
• BnB-PEP (Branch-and-Bound Performance Estimation Programming) is a

unified methodology to find the optimal first-order methods
– applicable convex/nonconvex smooth/nonsmooth problems

What is BnB-PEP?
• Shows that optimal first-order methods are themselves solutions to optimiza-

tion problems
• Proposes a custom branch-and-bound algorithm to solve these optimization

to certifiable global optimality and in a practical time scale
• For all the applications considered, finds first-order methods that outperforms

state-of-the-art results
• Provides a way to systematically generate mathematical convergence proofs

Setup
• Optimization problem. We want to solve minimize f (x), where x ∈ Rd is

the decision variable, f lies in some function class F , and d ≫ N

• Function class. F can be smooth/nonsmooth convex/nonconvex etc
• Class of fixed-step first-order methods MN . Any method M ∈ MN can be

described as:
pick initial point x0
x1 = x0 − h1,0f

′(x0)
x2 = x1 − h2,0f

′(x0) − h2,1f
′(x1)

...

xN = xN−1 −
N−1∑
i=0

hN,if
′(xi)

for some stepsizes {hi,j}
• Performance measure E . E measures the performance of method M ∈ MN

on f ∈ F , can be f (xN ) − f (x⋆), ∥xN − x⋆∥2, ∥∇f (xN )∥2, and so on

Optimal method
• Definition of the optimal method. The optimal method M⋆ ∈ MN can be

constructed by solving the min-max problem:
minimize
M∈MN



maximize
f,x0,...,xN ,x⋆

E (f, {xi})

subject to
f ∈ F ,
x⋆ is a globally optimal solution to minxf (x),
{x1, . . . , xN} generated by M from initial point x0,
x0 is not infinitely bad compared w.r.t. x⋆.




(P)

• (P) is an infinite-dimensional and intractable problem, BnB-PEP transforms
it into an equivalent nonconvex but practically tractable QCQP

Problem transformation
• Inner problem transformation. Transform the inner maximization problem

• Outer problem transformation. Transform the min-max problem (P) into a
nonconvex QCQP

BnB-PEP algorithm
• We propose the BnB-PEP algorithm to construct the optimal method by

solving the nonconvex QCQP to global optimality and it has three stages
• Stage 1 finds a feasible solution by solving a convex SDP
• Stage 2 warms-starts with the stage 1 solution and finds a locally optimal

solution using a nonlinear interior-point method
• Stage 3 warm-starts with the stage 2 solution and finds a globally optimal

solution using a customized spatial branch-and-bound algorithm

Customized branch-and-bound algorithm
• Computes tighter valid bounds on the variables using SDP-based relaxation
• Finds an improved lower-bound on the objective value via lazy constraints
• Implements custom-heuristics by exploiting structure at each node of the

BnB tree

Runtime comparison
Table 1: Runtime comparison between the BnB-PEP Algorithm and off-the-shelf
spatial branch-and-bound algorithm of Gurobi executed on MIT Supercloud.

Algorithm BnB-PEP Algorithm on a
core-i7 16 GB laptop

Default Gurobi on MIT
Supercloud

N = 1 0.343 s 7 h 35 m
N = 2 0.493 s 1 d 8 h
N = 3 1.864 s 5 d 19 h
N = 4 9.146 s More than a week

Constructing optimal algorithms numerically
Example. Optimal momentum-less GD xi = xi−1 − hi−1

L ∇f (xi−1) for min-
imizing L-smooth convex f

Generating proofs using BnB-PEP
• The potential function approach is used widely to construct proofs in opti-

mization
• BnB-PEP can construct the best algorithm w.r.t. to a given potential func-

tion and systematically generate analytical convergence proof as a by-product
• Example theorem where proof is generated by BnB-PEP. Let f be a 1-weakly

convex function with L-bounded subgradients. Assume the initial condition
f (y0) − f (x⋆) + ∥x0 − x⋆∥2 ≤ R2. Then,

xk+1 = xk −
√

1 + 4R2(N+1)/L2

2(N + 1)
f ′(xk),

exhibits the rate

1
N + 1

N∑
i=0

∥∇f1/2(xi)∥2 ≤
L2

(
2
√

1 + 4R2(N+1)/L2 − 1
)

N + 1
,

which improves upon the prior state-of-the-art rate


