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@ Introduction




Why study convex sets or functions?

> We know how to solve convex optimization problems “efficiently”
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Why study convex sets or functions?

> We know how to solve convex optimization problems “efficiently”

> These problems are called disciplined convex program and have the form:

minimize  fo(x) > fo : convex
zER

subject to  fi(z) <
hi(z) =

0, i=1,....,m, ©f;:convex
0, i=1,....,p. ©>h;:affine
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Why study convex sets or functions?

> We know how to solve convex optimization problems “efficiently”

> These problems are called disciplined convex program and have the form:

minimize  fo(x) > fo : convex
zeRd
i=1,...,m, D>f;:convex

subject to  fi(z) <0,
hi(x)=0, i=1,...,p. ©>h;:affine

> Most real-world problems are nonconvex

® We either approximate them as convex problems

® We solve a sequence of increasingly accurate convex problems

® We “hope” that the problem is locally convex and apply convex
optimization algorithms
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A brief history of convex optimization

> 1947: G. Dantzig, who works for US air-forces, presents the Simplex method for
solving LP-problems

> 1948: J. Von Neumann establishes the theory of duality for LP-problems

> 1951: H.W. Kuhn and A.W. Tucker reinvent Karush’s optimality conditions
(known as KKT conditions)

> 1951: H. Markowitz presents his portfolio optimization theory => (1990 Nobel
prize)

> 1954: L.R. Ford’s and D.R. Fulkerson’s research on network problems
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A brief history of convex optimization

> 1960-1970: Many of the early works on first-order optimization algorithms are
done (mostly developed in Soviet Union)

> 1983: Nesterov comes up with accelerated gradient descent

> 1984: N. Karmarkar’s polynomial time algorithm for LP-problems begins a
boom period for interior point methods

> 1990s: Semidefinite optimization theory

> 2010-present: First-order methods become very hot again due to machine
learning

> 2014: Performance estimation problem: computer-assisted design and analysis
of optimization algorithms



® How to recognize convexity?
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How can you tell if a problem is convex?

Need to check convexity of a function f
Approaches:
use basic definition

first or second order conditions, e.g., V2f(z) = 0

vV vV vV VvV V

via convex calculus: construct f using

® library of basic examples or atoms that are convex
® calculus rules or transformations that preserve convexity



Basic convex functions (convex atoms)

v v v VvV Vv VvV yv

2P forp>lorp<0; —a2P for 0 < p<1whenz >0
e for any a,—logx for z > 0, zlogx for z > 0
a'z+b

e x; xa/y (for y > 0); Valx

[|z[| (any norm)

max(x1,...,Ty)

log(e®™ + ...+ ¢e"™)

logdet X! (for X = 0)

These are also called atoms because they are building block of much more
complex convex functions. There are many such atoms, most convex
programs in practice can be built from these atoms. A more complete list
can be found at

® https://jump.dev/Convex.jl/stable/operations/.
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https://jump.dev/Convex.jl/stable/operations/

Convex calculus rules

nonnegative scaling: if f is convex then af is convex if o > 0
sum: if f and g are convex, then so is f + g

affine composition: if f is convex, then so is f(Ax + b)

v VvV VvV V

pointwise maximum: if fi, fs,..., f;n are convex, then so is

f((E) = MaX;ec{1,...,m} fl(x)

pointwise supremum: if f(z,y) is convex in z for all y € S, then

g(x) = sup, g f(z,y is convex

> partial minimization: if f(x,y) is convex in (z,y) and C is convex, then
g(x) = mingec f(x,y) is convex

> composition: if h is convex and increasing and f is convex, then

g(z) = h(f(z)) is convex

\%



Proving convexity via convex calculus

> piecewise-linear function: f(z) = maxizl,__,7k(a;z +b;)
> f1-regularized least-squares cost: || Az — b||3 + A||z||; with A >0
> support-function of a set: S¢(x) = maxyec x "y where C is any set

> distance to convex set: f(z) = mingec ||z — yll2



Proving convexity via computer

> The Julia package Convex. jl can recognize convexity in a functions if it
can be constructed via convex calculus

> Sometimes, Convex. j1 would not be able to prove convexity, in that case
we may have to prove convexity using pen and paper

> One useful approach is “restriction on a line”
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“Restriction on a line” approach for proving convexity

Show that f(z): R™ — R is convex if and only if the single variable function
Guv(t) = f(u+ tv) is convex for any u,v € R™ (¢ is a scalar).
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“Restriction on a line” approach for proving convexity

Show that f(z): R™ — R is convex if and only if the single variable function
Guv(t) = f(u+ tv) is convex for any u,v € R™ (¢ is a scalar).

Proof:

(f cvx=gun cvx )

f is convex if and only if

In the inequality above, set x < u + t1v, y < u + tav, then we have

FM(u+t10) + (1= N (u+t20)) < Af(u+t10) + (1= A) f(u + t2v)
& flu+ Mg+ (1= Nt)v) = guwMy + (1= A)ity)
S )‘gu,v (tl) + (]- - )\)gu,v(tZ),

which is equivalent to saying that g, . is convex.
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“Restriction on a line” approach for proving convexity

Show that f(z): R™ — R is convex if and only if the single variable function
Guu(t) = f(u+ tv) is convex for any u,v € R™.
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“Restriction on a line” approach for proving convexity

Show that f(z): R™ — R is convex if and only if the single variable function
Guu(t) = f(u+ tv) is convex for any u,v € R™.

Proof: (g, cvx = f cvx)

Ju,v is convex if and only if

gu,’u()\tl + (]- - )\)t2) S )\gu,v<t1) + (]- - )\)gu,u(tQ)v A€ [07 ]-]7 t17t2 eR
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“Restriction on a line” approach for proving convexity

Show that f(z): R™ — R is convex if and only if the single variable function
Guu(t) = f(u+ tv) is convex for any u,v € R™.

Proof: (g, cvx = f cvx)

Ju,v is convex if and only if

Guw(Mt1+ (1= Nta) < Aguw(tt) + (1 = N)guw(t2), A€0,1],t1,t2 €R

Now let t; = 1 and t5 = 0, and set u <— x,v - y — x. Then

Gry—a (A1 + (1= Nt2) < Agzy—a(t1) + (1 = A)guy—z(t2)
<:>gz,y—w(>‘) < /\gw,y—m(l) +(1— )‘)gw,y—m(o) > gm,y—w(/\) = f(.%‘ + )\(y - x))
Sf@+Ay—2) =M+ (1=Nz) < Af(y) + (1= A)f(2)

The last line means that f is convex on R" as x,y could be any points in R™.
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“Restriction on a line” approach for proving convexity

Show that f(z): R™ — R is convex if and only if the single variable function
Guu(t) = f(u+ tv) is convex for any u,v € R™.

Proof: (g, cvx = f cvx)

Ju,v is convex if and only if

Guw(Mt1+ (1= Nta) < Aguw(tt) + (1 = N)guw(t2), A€0,1],t1,t2 €R

Now let t; = 1 and t5 = 0, and set u <— x,v - y — x. Then

Gry—a (A1 + (1= Nt2) < Agzy—a(t1) + (1 = A)guy—z(t2)
©gzy—2(A) S Aay—2(1) + (1= N)gzy—2(0) D guy—2(N) = flz+ Ay —2))
Sfl@+Ay—2) = fAy+ (1= Nz) <Af(y) + (1 =N f(2)

The last line means that f is convex on R" as x,y could be any points in R™.

> Note that if the domain of f is not the entire space R", you need to show
that for any x,y, g(t) = f(x + ty) is convex for all values of ¢ such that x
and x + ty are in the domain of f.
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Applications

Application II: Let f = —Indet X, with dom f := {X € S™ : X > 0}. Show f is
convex.
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Applications

Application II: Let f = —Indet X, with dom f := {X € S" : X > 0}. Show f is
convex.

> Let H € S", and g(t) = f(X +tH) = —Indet(X + tH), so that

domg={teR: X +tH > 0},
det(X + tH) = det(X/?) det(I + tX~YV2HX/?) det(X/?)
= det(X)det(I +tH), where H=X"1Y2HXx"1/2
det(I +tH) = det(I + tUDU ")
=det(I +tU'UD)
= det(I +tD)
=TI, (T +tX) > X\ = eigenvalues of H.
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Applications

Application II: Let f = —Indet X, with dom f := {X € S" : X > 0}. Show f is
convex.

> Let H € S", and g(t) = f(X +tH) = —Indet(X + tH), so that

domg={teR: X +tH > 0},
det(X + tH) = det(X/?) det(I + tX~YV2HX/?) det(X/?)
= det(X)det(I +tH), where H=X"1Y2HXx"1/2
det(I +tH) = det(I + tUDU ")
=det(I +tU'UD)
= det(I +tD)
=TI, (T +tX) > X\ = eigenvalues of H.

Therefore,

g(t) =—Indet X +>"1 | [—In(1 +t\;)],
—— —_—

constant convex in t
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Recitation 2: Separating hyperplane theorem, convex
calculus, and convex relaxation

Shuvomoy Das Gupta
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@ Separating hyperplane theorem and variants

Shuvomoy Das Gupta (MIT)
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Separating hyperplane theorem

> Suppose C and D are two convex sets that do not intersect, i.e., C[\D =)
® = there exist a # 0 and b such that a'x<bforallxe Canda'x > b for
all x € D.
® je., the affine function a' x — b is nonpositive on C and nonnegative on D.
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Separating hyperplane theorem

> Suppose C and D are two convex sets that do not intersect, i.e., C[\D =)
® = there exist a # 0 and b such that a'x<bforallxe Canda'x > b for
all x € D.
® je., the affine function a' x — b is nonpositive on C and nonnegative on D.
> The hyperplane {x | a' x = b} is called a separating hyperplane for the sets
C and D, or is said to separate the sets C and D.
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Separating hyperplane theorem

> Suppose C and D are two convex sets that do not intersect, i.e., C(\D =10
® = there exist a # 0 and b such that a'x<bforallxe Canda'x > b for
all x € D.
® je., the affine function a' x — b is nonpositive on C and nonnegative on D.
> The hyperplane {x | a' x = b} is called a separating hyperplane for the sets
C and D, or is said to separate the sets C and D.

> [Figure 2.19, boyd vandenberghe]
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Converse separating hyperplane theorem is false

> Consider C = D = {0}, then we have exist a =1 # 0 and b = 0 such that
a'x<bforallxe Canda'x>bforal xeD

> But of course C( D = {0}



Applications of separating hyperplane theorem

> Support vector machine
> Establishing strong duality under constraint qualification
> Collision detection

> Computing worst-case function for a given algorithm

Shuvomoy Das Gupta (MIT)
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Strict separating hyperplane theorem

> Suppose C and D are two closed, convex sets that do not intersect, i.e.,
C D =0, and at least one of them are bounded
® — there exist a # 0 and b such that a' x < b for all x € C and a" x > b for
all x € D.

® je., the affine function a'

x — b is negative on C and positive on D.
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Boundedness is required for strict separation

> Consider C = {(x,y) |y <0}, D={(x,y) | x >0,y > 0,xy > 1}

10+
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® Proving Schur's complement using convex calculus
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Schur’s complement

> Schur’s complement: If A is invertible and A = 0 and
A B
|:BT C:| t O;

Then C — BTA"1B >~ 0.

Shuvomoy Das Gupta (MIT)
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Schur’s complement

> Schur’s complement: If A is invertible and A = 0 and

A B
o =

Then C — BTA"1B >~ 0.

> Have many applications:
® Used in numerical linear algebra
® Power system harmonic analysis (Kron reduction)
® Convex relaxation of nonconvex problems
® Generating mathematical proofs in performance estimation literature
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Schur’s complement

> Schur's complement: If A is invertible and A > 0 and

A B
o =

Then C — BTA"1B >~ 0.

> Have many applications:

® Used in numerical linear algebra

® Power system harmonic analysis (Kron reduction)

® Convex relaxation of nonconvex problems

® Generating mathematical proofs in performance estimation literature

> Convex calculus rule: If f(x,y) is a jointly convex function in x and y and S
is a convex set, then g(y) = infycs f(x,y) is convex.
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Schur’s complement

> Schur's complement: If A is invertible and A > 0 and
A B
|:BT C:| t O;
Then C — BTA"'B > 0.

> Have many applications:

® Used in numerical linear algebra

® Power system harmonic analysis (Kron reduction)

® Convex relaxation of nonconvex problems

® Generating mathematical proofs in performance estimation literature

> Convex calculus rule: If f(x,y) is a jointly convex function in x and y and S
is a convex set, then g(y) = infycs f(x,y) is convex.

> Prove Schur’s complement using convex calculus
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Schur’s complement
> Define
X" A B][x
_ _ T T T
f(x,y) = [y] [BT C} [y] =x Ax+2(By)' x+y Cy

> f is jointly convex in (x, y)
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Schur’s complement

>> Define
x]"[A B][x
_ _ T T T
f(x,y) = [y] [BT C} [y] =x'Ax+2(By)' x+y Cy

> f is jointly convex in (x, y)
> Define g(y) = inf,f(x, y), convex in y

® Minimum over all x is achieved when V. f(x,y) =0

°* x*=_—A"'By

Shuvomoy Das Gupta (MIT)
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Schur’s complement

> Define
X T A Bj |x
_ LT T T
f(x,y) = [y] [BT C} L/] =x Ax+2(By)' x+y Cy

> f is jointly convex in (x, y)
> Define g(y) = inf,f(x, y), convex in y

® Minimum over all x is achieved when V. f(x,y) =0
* x*=—A"'By

gly) = f(x"y)
= (=A7'By)TA(-A"'By) +2(By) " (-A"'By) +y' Cy
=—y'BTA By +yTCy
=y"(-BTAT1B+ Q)y
> Applying the convexity result, we know that g(y) is convex and hence its
Hessian is positive semidefinite
> —BTA1B+C>0



© Convex relaxation of nonconvex problems

Shuvomoy Das Gupta (MIT)
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Nonconvex quadratic program

> Consider
minimize  x' Qx
x€RY
subject to xTAjx >0
> Under what condition this problem will be nonconvex?

> Construct a convex relaxation of this nonconvex problem

Shuvomoy Das Gupta (MIT)
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Nonconvex quadratic program

> Key idea: x" Qx =tr (x" Qx) = tr (Qxx ") because tr (AB) = tr (BA)
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Nonconvex quadratic program

> Key idea: x" Qx =tr (x" Qx) = tr (Qxx ") because tr (AB) = tr (BA)
> Define a new variable X = xx "

minimize  x' Qx Q]I]QJ,TIGZS% tr (QX)
> So x€R4 = (A,X) >0,

subject to  xTAix >0 subject to ;; .

XX
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Nonconvex quadratic program

> Key idea: x" Qx =tr (x" Qx) = tr (Qxx ") because tr (AB) = tr (BA)

> Define a new variable X = xx "

= | subject to tr

minimize  tr (QX)
(A
X —

minimize xT Qx xERY, XS

R

> SO xe IX) Z Oa
T

subject to  xTAix >0
XX

> Consider the relaxation
X = xx |
SX—xx" =0

1 xT
©{x X}to
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Nonconvex quadratic program

> Key idea: x" Qx =tr (x" Qx) = tr (Qxx ") because tr (AB) = tr (BA)

> Define a new variable X = xx "
minimize  tr (QX)

minimize  x' Qx x€ERI XeSd r(Q
So = (A

v

x€ERd = .
i >
subject to  xTAix >0 subject to ; v j?"_ 0,

> Consider the relaxation
X = xx |
X —xx| =0
1 xT
—
& { X} =0
> Drop the rank constraint, which leads to the convex relaxation
>
minimize  tr (QX)
x€ERI, X€ESI
subject to  tr (A;X) > 0,
1 xT
= 0.
MR

Shuvomoy Das Gupta (MIT)

13 /14



Applications of SDP relaxation

Applications: Such relaxations works very well in

>

v vV vV V

Max-cut problem

Optimal power flow problem (tight for tree structured network)

Computing bounds on variables for nonconvex problem

Various combination optimization problems

See Boyd, Stephen, and Lieven Vandenberghe. "Semidefinite programming
relaxations of non-convex problems in control and combinatorial
optimization." Communications, Computation, Control, and Signal

Processing: a tribute to Thomas Kailath (1997): 279-287. https://wuw.
seas.ucla.edu/~vandenbe/publications/sdp_relaxations.pdf

Solving SDP is very easy in Julia:
https://shuvomoy.github.io/blogs/posts/Solving_semidefinite_
programming_problems_in_Julia/


https://www.seas.ucla.edu/~vandenbe/publications/sdp_relaxations.pdf
https://www.seas.ucla.edu/~vandenbe/publications/sdp_relaxations.pdf
https://shuvomoy.github.io/blogs/posts/Solving_semidefinite_programming_problems_in_Julia/
https://shuvomoy.github.io/blogs/posts/Solving_semidefinite_programming_problems_in_Julia/

Shuvomoy Das Gupta, (MIT)

Duality and KKT points

“What you seek is seeking you”-Rumi

Shuvomoy Das Gupta
MIT
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History of duality

Figure 1: Werner Fenchel (left), John von Neumann (middle), and Joseph-Louis
Lagrange (right): three key figures in duality (generated by DALL-E-2)
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History of duality

> The first step towards duality is constructing a Lagrangian
> Lagrangian is named after Joseph-Louis Lagrange (1736-1813)

® He invented Lagrangian while studying general equations of equilibrium for
problems with constraints

LGeorge B. Dantzig, Impact of Linear Programming on Computer Development. (Highly
Recommended) https://apps.dtic.mil/sti/pdfs/ADA157659.pdf


https://apps.dtic.mil/sti/pdfs/ADA157659.pdf

History of duality

> The first step towards duality is constructing a Lagrangian
> Lagrangian is named after Joseph-Louis Lagrange (1736-1813)
® He invented Lagrangian while studying general equations of equilibrium for
problems with constraints

> John von Neumann (1903-1957) came up with duality theory for linear
programs, it took him one hour!
® Fall 1947: Dantzig visited Neumann to tell him about simplex, which led
to linear programming duality

LGeorge B. Dantzig, Impact of Linear Programming on Computer Development. (Highly
Recommended) https://apps.dtic.mil/sti/pdfs/ADA157659.pdf


https://apps.dtic.mil/sti/pdfs/ADA157659.pdf

History of duality

> The first step towards duality is constructing a Lagrangian
> Lagrangian is named after Joseph-Louis Lagrange (1736-1813)
® He invented Lagrangian while studying general equations of equilibrium for
problems with constraints

> John von Neumann (1903-1957) came up with duality theory for linear
programs, it took him one hour!

® Fall 1947: Dantzig visited Neumann to tell him about simplex, which led
to linear programming duality

> Convex optimization duality relies on the notion of Fenchel conjugate
® Due to Werner Fenchel (1905 — 1988)

LGeorge B. Dantzig, Impact of Linear Programming on Computer Development. (Highly
Recommended) https://apps.dtic.mil/sti/pdfs/ADA157659.pdf


https://apps.dtic.mil/sti/pdfs/ADA157659.pdf

® Lagrangian for a nonlinear problem
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Lagrangian

> Standard form problem (not necessarily convex)

>
o= mlilelg}ilze fo() P)
subject to  fi(x) <0, i=1,...,m.

> Throughout this recitation we will assume that p* is finite and optimal
solution x* exists
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Lagrangian

> Standard form problem (not necessarily convex)

>
o= ml;lelg}ilze fo() P)
subject to  fi(x) <0, i=1,...,m.

> Throughout this recitation we will assume that p* is finite and optimal
solution x* exists

> Lagrangian
L(z,A) = fo(z) + Z\)"i/fi(x) (£)

> What is the nature of L(xz, \)?
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Lagrangian

> Standard form problem (not necessarily convex)

>
o= ml;lelg}ilze fo() P)
subject to  fi(x) <0, i=1,...,m.

> Throughout this recitation we will assume that p* is finite and optimal
solution x* exists

> Lagrangian
L(x,\) = i Ji
(z, ) fo(l‘HZ Ai fi(x) (£)
=1 20
> What is the nature of L(xz, \)?

> Interpretation: Lagrangian is a “sort of” penalized form (P)

> ); is the Lagrange multiplier associated with f;(xz) <0

Shuvomoy Das Gupta, (MIT)



Lagrangian

L(z,\) = fo(z Ai filz L
( ) fO()‘*';\z,;/fz() ()
> \; acts a penalty term for per unit violation of f;(z) <0
> For a given x, if f;(z) > 0 then A, f;(x) will introduce penalty in L(x, A)
> If fi(z) <0, then A;f;(z) will introduce subsidy in L(z, A)
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Lagrangian

L(x,\) = fo(z N filx L
(z, ) fo()+;§%f() (£)
> \; acts a penalty term for per unit violation of f;(z) <0
> For a given x, if f;(z) > 0 then A, f;(x) will introduce penalty in L(x, A)
If fi(z) <0, then A, f;(z) will introduce subsidy in L(z, A)

v

> Minimizing Lagrangian is a “sort of” proxy for minimizing the original
problem (P)

> Natural idea: cannot solve (P), lets minimize the Lagrangian for a given
A>0

Shuvomoy Das Gupta, (MIT)



Lagrange dual function

>
g(\) = min L)
:;IEHRI}ifO(x)—FZ Ai fz(x)
=1 >0
= —(max — fola) = 3° Afila) )

convex in A
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Lagrange dual function

>
— min L(x,A
g(\) = min L)
=fé%{gfo(x)+; Ai fil®)
1= >0

convex in A

> g(A) is concave in A
> If we wanted to maximize g(A), it is an “easy” problem

> Computing g()) is easy if (P) is convex and can by found by solving

Vfo(z) + Z AiVfi(x)=0

i=1
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® Weak duality and strong duality
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Towards weak duality

> First nontrivial statement about duality
> If we have a feasible z for (P) and A > 0, then g(A\) < fo(z)
> We have p* > d* where

I ( maxi}\mize g(N) ) (D)

subject to A >0

> (D) is called the dual problem
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Towards weak duality

> First nontrivial statement about duality
> If we have a feasible z for (P) and A > 0, then g(A\) < fo(z)
> We have p* > d* where

g — < maxgmize g(A) ) D)

subject to A >0

>> (D) is called the dual problem

> Proof:
* folz) > folx) + 3270, A fi(z) = L(z, A) > ming L(z,A) = g(})

>0
® z* is a feasible point, so p* = fo(z*) > g(A\) =d

*
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Weak duality: “A thing of beauty is a joy for ever”

> We just showed, for any A > 0, we have g(\) < p*
> If we want to maximize g()), it is an “easy” problem

> Natural idea: lets maximize g(A) to make it as close to p* as possible

I < maxi\mize g(N) ) D)

subject to A >0

> Of course, d* = maxy>g g(A) < p*: this is weak duality

Shuvomoy Das Gupta, (MIT)



Weak duality: “A thing of beauty is a joy for ever”

\%

We just showed, for any A > 0, we have g(\) < p*

v

If we want to maximize g(A), it is an “easy” problem

v

Natural idea: lets maximize g(\) to make it as close to p* as possible

I < maxi\mize g(N) ) D)

subject to A >0

v

Of course, d* = maxy>o g(A) < p*: this is weak duality

v

Weak duality always holds

(D) is always a convex optimization problem, no matter what the primal
(P) is

> Can be used to find nontrivial lower bounds for difficult problems

v
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Strong duality

> If both (P) and (D) have the same optimal value, we say strong duality
holds

> At strong duality d* = p*
> Does not hold in general

> Usually holds for convex problems

Shuvomoy Das Gupta, (MIT)



® Duality = KKT conditions

uvomoy D ipta, (MIT)



How duality leads to KK'T' conditions

> KKT point is one of the centerpieces of modern optimization
® Tells what an optimal point (P) for will look like from the view point of
(D)
® [t is a system of equations involving both primal and dual variables
® Both primal and dual variables seek an equilibrium like state at optimality

Shuvomoy Das Gupta, (MIT)



How duality leads to KKT conditions

v

KKT point is one of the centerpieces of modern optimization

® Tells what an optimal point (P) for will look like from the view point of

(D)

® [t is a system of equations involving both primal and dual variables

® Both primal and dual variables seek an equilibrium like state at optimality
Many primal-dual solvers compute a KKT point
Short form of Karush-Kuhn—Tucker conditions
Harold W. Kuhn and Albert W. Tucker first published the KKT
conditions in 1951

Later it was discovered that William Karush did it in his master’s thesis
in 1939

Shuvomoy Das Gupta, (MIT)



KKT Conditions for any problem

> Suppose (P) is any problem (not necessarily convex). Consider optimal
primal variable * and optimal dual variable A* and suppose strong
duality holds.

Shuvomoy Das Gupta, (MIT)



KKT Conditions for any problem

> Suppose (P) is any problem (not necessarily convex). Consider optimal
primal variable * and optimal dual variable A* and suppose strong
duality holds.

> Then they will satisfy

® primal feasibility: fi(z*) <0fori=1,2,...,m

® dual feasibility: A\; > 0for:=1,2,...,m

® z* is a minimizer of the Lagrangian at \*: V fo(z*) + > /" AIVfi(z*) =0
® complementary slackness: A fi(z*) =0, fori =1,2,...,m

Shuvomoy Das Gupta, (MIT)



KKT Conditions for any problem

> Suppose (P) is any problem (not necessarily convex). Consider optimal
primal variable * and optimal dual variable A* and suppose strong
duality holds.

> Then they will satisfy

® primal feasibility: fi(z*) <0fori=1,2,...,m

® dual feasibility: Ay > 0fori=1,2,...,m

® z* is a minimizer of the Lagrangian at \*: V fo(z*) + > /" AIVfi(z*) =0
® complementary slackness: A fi(z*) =0, fori =1,2,...,m

> These are the KKT conditions for the primal-dual system

o> For any optimization problem with differentiable objective and
constraints for which strong duality holds, any pair of primal and dual
optimal point must satisfy KKT conditions.

> For convex primal problem, KKT condition is also sufficient for the points
to be primal and dual optimal.

Shuvomoy Das Gupta, (MIT)



KKT Conditions for convex problem

> Suppose (P) is a convex problem. Consider optimal primal variable x*
and optimal dual variable A*. Then they will satisfy
® primal feasibility: fi(z*) <0fori=1,2,...,m
® dual feasibility: A\ > 0fori=1,2,...,m
® z* is a minimizer of the Lagrangian at \*: V fo(z*) + Z AV Sfi(x*) =0
® complementary slackness: A f;(z*) =0, for i =1,2,..

Shuvomoy Das Gupta, (MIT)



KKT Conditions for convex problem

> Suppose (P) is a convex problem. Consider optimal primal variable x*
and optimal dual variable A*. Then they will satisfy
® primal feasibility: f;(z*) <0 fori =1, 2, cee,m
® dual feasibility: A\ >0 fori=1,2,.
® z* is a minimizer of the Lagrangian at )\* V fo(z™) + Z A VSfi(z*) =0
® complementary slackness: A fi(z*) =0, for i = 1,2,.

> For a KKT pair in this setup strong duality will hold automatically

Shuvomoy Das Gupta, (MIT)



KKT Conditions for convex problem

> For a KKT pair strong duality will hold automatically

m

V folx +Z>\*sz =
=1

== e
=9(\")
= min L(z, \*)
' .. =0 (comp. slack.)
= fo(z*) + Z Aifi(z")

i=1

Shuvomoy Das Gupta, (MIT)



Proof of complementary slackness

> x* is an optimal solution to (P), and A\* is an optimal solution to (D),
and strong duality holds

Shuvomoy Das Gupta, (MIT)



Proof of complementary slackness

> x* is an optimal solution to (P), and A\* is an optimal solution to (D),
and strong duality holds

> Then
fola™) = g(A") = min (L(z,A"))
= mln ( )+ Z A filz )
< fo(z*) + Z A fz >z* optimal for (P),

i= 1 >0 S
< fo(z*), ©but this is LHS

Shuvomoy Das Gupta, (MIT)



One of the cutest proofs

fola™) + Z\/\Lfi(w*) = fole*) = Y A filz*) =0
i=1

=135
<0

> If we add a bunch of nonpositive numbers and they add up to zero, then
the only possibility is that each of them is individually zero!

> So, we have \;fi(z*)=0fori=1,...,m
Note that this also implies why argmin, (fo(z) + > i) Af fi(z)) = z*i.e.,
the third KKT conditions

> One of the cutest proofs that I have every seen!

v

Shuvomoy Das Gupta, (MIT)



Duality for convex QCQP

> Consider the convex QCQP where Py > 0

*

pr = reR4

minimize %xTPox + q(;rac + 7o
subject to %xTPZ-x +ql x4+ <0,

i=1,...



Duality for convex QCQP

> Consider the convex QCQP where Py > 0

minimize %xTPox + q(—)rac + 7o
p* = zER
subject to %xTPix + q:x +7r; <0, ¢1=1,...,m

> Lagrangian

m

1 1
L(z,\) = ixTPox + qOTx +7ro+ Z Ai <2xTPix + q;x + ri>
i=1

1 m m m
= §xT (Po + Z )\iPi> x + (qo + Z /\iqi)T.’E + (7‘0 + Z )\ﬂ‘i)
=1 =1 =1
1
= émTP(A):c +q\) Tz +7r(N)



Dual function

>> Dual function: As A > 0, g(\) = min, L(x, \) achieved at

PNz +q\)=0=2=—-P\) tq¢())




Dual problem

o= max&mize —2g(N\)TPA)rg(N) + (N
subject to A >0

> Strong duality will hold if there is a point = that is strictly feasible

> Why is —1¢(A\)TP(A)71q(A) + r(A) is concave?

> g(\) = ming 5o 7 (Po + 3270 XiP) o+ (qo+ 2270 Migi) T+ (ro+ 3000 Airi)

> Pointwise minimum of a family of affine functions of A = it is concave
(See Section 3.2.3 of Boyd and Vandenberghe)



15.084/6.7220 Solving optimization
problems in practice
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Please download the notebook

From Canavas please download the zip file Notebook.zip in the
module Recitation 4

Extract the zip file to a location of your choice
Change directory to that folder ||Az + bl < c 'z +d

ﬂ@={m’$§0

0, x>0

Open Julia from terminal and type
cd("C:\\Desktkop’’)

using IJulia

notebook ()
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What happened?

» Recall the messed up primal problem covered in the class yesterday

minimize  x7 + x9
z€ERY

subject to 2% + 2% -2 <0, (MESS)
V2 —2<0

» Convex problem :)
» KKT conditions did not hold...? What happened?
> Lets try to understand this (MESS) step by step



Build the primal-dual system

» Consider a slightly general problem with a > 0

minimize  x7 + x9
z€R4

subject to  x% + 23 —2 <0, (P)
a—x<0

where in (MESS) we had a = /2

Miscellaneous topics



Build the primal-dual system

» Consider a slightly general problem with a > 0

minimize  x7 + x9
z€R4

subject to  x% + 23 —2 <0, (P)
a—x<0

where in (MESS) we had a = /2
» Lagrangian
>

L(zi, 29, M, 0) =x1 422+ M (22+22-2)+ X\ (a—x
(71,22, A1, A2) 1 2 1(1 2 ) 2 ( )

>0 >0
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Build the primal-dual system

» Consider a slightly general problem with a > 0

minimize  x7 + x9
z€ERY

subject to  x% + 23 —2 <0, (P)
a—x<0

where in (MESS) we had a = /2
» Lagrangian
>

L(zi, 29, M, 0) =x1 422+ M (22+22-2)+ X\ (a—x
(71,22, A1, A2) 1 2 1(1 2 ) 2 ( )

>0 >0

» Dual function g(A1, A2) = min, L(z1, 2, A1, A2), can be computed
by taking derivative of Lagrangian w.r.t (z1,22) and set it equal to
zero

— optimal solution this problem appears at (—1/2A1, (A2 — 1)/2\1)

Miscellaneous topics



Dual problem

» So, dual function in closed form is:

8)\% + )\% —4adoA1 — 2X9 + 2

g()\17)\2):_ 4)\1



Dual problem

» So, dual function in closed form is:

8AZ + A2 —dadod; — 2Xo + 2
9O\, Ag) = — 11t A3 aA2 A1 2+

4N

» Dual problem is

( maximize _ 8ATHA—dada A1 —2X2+2 )

A1 A2 M
subject to A1 >0, A2 > 0.



Dual problem

» So, dual function in closed form is:

8)\% + )\% —4adoA1 — 2X9 + 2

A1, Ag) = —
9(A1, A2) o
» Dual problem is
maximize _ 8ATHA—dada A1 —2X2+2
A1,A 4
subject to A1 >0, A2 > 0.

» g(A1, \2) concave, so

— take derivative w.r.t (A1, A2)
— set it equal to zero
— if the found (A1, \2) is positive, we have the optimal solution



Lets solve the dual problem

2 2
> So Vg(A1, A2) = <_8)‘1+2,2\§_2/\2+27 2a/\127\1\2+1) = (0,0)

» For the solution to exist we need \; # 0



Lets solve the dual problem

—8AZ4AZ_2X0542 20—
> S0 Vg(h, \g) = (FREEE2 2 2ah et — (9,0)
» For the solution to exist we need \; # 0
» Resultant equations are
8N4 A 20 +2=0
2@)\1 - )\2 +1=0

» Solutions are

() (e )




Lets solve the dual problem

> So Vg(A1, A2) = <_8)\%+§\§_2A2+27 2a/\127\1\2+1) = (0,0)

» For the solution to exist we need \; # 0

» Resultant equations are

8N4 A 20 +2=0
20\ — A2 +1=0

Solutions are

() (e )

Only the second one can be feasible as long as 2 — a? > 0 (finite
when strictly positive)

2} = —v2 —a? and 25 = a = on the verge of infeasibility for
a= \/?

But in (P) we set a = /2 thus no finite dual can exist, primal is
very ill-posed = Root cause of all problem :)



KKT conditions for (P)

» Extended arithmetic: 0 x 0o =0 =0 X (—00)
— See Rockafellar Wets Variational Inequality §E, Chapter 1

Miscellaneous topics



KKT conditions for (P)

» Extended arithmetic: 0 x 0o =0 =0 X (—00)
— See Rockafellar Wets Variational Inequality §E, Chapter 1
> Primal solution z* = (—v/2 — a2, a), dual solution
M= (1/(2\/—7a2) 1+a/V2—a?)
» Primal feasibility: 272 + 232 —2=0,25 —a =10
» Dual feasibility A* > 0 as long as 2 — a? > 0
» Vanishing gradient of Lagrangian:
(2 727 + 1, =5 + 2 725 + 1) = (0,0)
> Complementary slackness A} (232 + 232 — 2) = 0 and
A(z5—a)=0

Miscellaneous topics



Recipe for constructing duals

» Standard form problem (not necessarily convex)
minimize  fo(x)
* ER
P" = | subjectto fi(x)<0, i=1,...,m, (P)
hi(x)=0, i=1,...,p.

Miscellaneous topics

10



Recipe for constructing duals

» Standard form problem (not necessarily convex)
minimize x
. z€ERY fO( )
P =\ subjectto fi(z) <0, i=1,...,m,
hz(x) =0
> Lagrangian

m p
L(z, A\ v) = fo(z) + Z\A;fi(ﬂﬂ) + Z\V/z’/hi(x)
Lk >0 i=1 free

» Dual function
g(A,v) = min L(z, A\, v)

Miscellaneous topics

(P)

10



Recipe for constructing duals

» Standard form problem (not necessarily convex)
minimize x
. z€ERY fO( )
P =\ subjectto fi(z) <0, i=1,...,m,
hz(x) =0
> Lagrangian

m p
L(z, A\ v) = fo(z) + Z\A;fi(ﬂﬂ) + Z\V/z’/hi(x)
Lk >0 i=1 free

» Dual function
g(A,v) = min L(z, A\, v)

» Dual problem

maximize  g(\,v)

" A,V
d* = subject to A\ >0,
v free

Miscellaneous topics

(P)

10



A convexity proof (you can skip this)

» Show that

h(N) = (a0 + Y Xiagi) " (Po +> )\iP¢> (q0+ Y Nigi)
i-1 i=1

=1

is convex in A if Po+ > 1" NP - 0.

Miscellaneous topics
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A convexity proof (you can skip this)

» Show that
m m -1 m
h(A) = (qo + Z Xigi) <Po + Z )\i-Pi> (qo0 + Z Aigi)
i=1 i=1 i=1

is convex in A if Py +>_1" NP >~ 0.

» Proof: A function f is convex if its epigraph
{(z,t) e R® x R | x € domf, f(x) <t} is a convex set

Miscellaneous topics
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A convexity proof (you can skip this)

» Show that

h(N) = (a0 + Y Xiagi) " <P0 +> m) (q0+ Y Nigi)
i=1 1=1

i=1
is convex in A if Py +>_1" NP >~ 0.

» Proof: A function f is convex if its epigraph
{(z,t) e R® x R | x € domf, f(x) <t} is a convex set

» Epigraph of h

i=1

epif = {0 8) | (a0 + 32 hia) (P + D AP a0 + > hiay) <
=1 =1

Py +§:,\ipi - 0}

=1

Miscellaneous topics

t,

11



A convexity proof (you can skip this)

» Schur's complement: Let A is invertible and A = 0. Then

[AB

_ pT 4-1
BT C]EO(:)C B"AT'B>0



A convexity proof (you can skip this)

» Schur's complement: Let A is invertible and A = 0. Then

A B T 41
{BT C]EO@C—BA B >0

» Note that

m m m
t—(qo+ Y Ngi) (Po+ > NP) Hgo+ Y Nigi) >0
i=1 i=1 i=1
Schur [ Po+ 3 NP qo 4 20 Nigi
(q0+ X000 M) T t

which is a linear matrix inequality in the variable (A, t), a convex
constraint.

B
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Solving optimization problems in practice
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Lets open the ipynb file

» We will explore solving problems in practice next



15.084/6.7220 Recitation 5: Miscellaneous
topics

"Let the beauty of what you love be what you do." - Rumi

Shuvomoy Das Gupta
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SDP and its many variants



SDP

® General form SDP
minimize ¢'z
subject to  Fy + > i, a;F; = 0
Ax =10

® An inequality of the form Fy + >, ;F; = 0 is a linear matrix
inequality (LMI)

SDP and its many variants



LMiIs in different form

® Multiple LMI constraints can be combined to create a single one

F0+131F1++.’I}mFmtO7
Fo+xiFi+...4xpmF, =0

can be written as one LMI (- means block matrix with all Os of
appropriate size)

Fy - Fyoo- F,, .
|:. F0:|+$1|: F1:|++$m|: F"L:|>0.



LMiIs in different form

® Multiple LMI constraints can be combined to create a single one

[ )
F0+131F1++.’I}mFmtO7
Fo+xiFi+...4xpmF, =0

can be written as one LMI (- means block matrix with all Os of
appropriate size)

Fy - Fyoo- F,, .
|:. F0:|+$1|: F1:|++$m|: F"L:|>0.

® Consider Az > b where A € RP*™ and x € R™, we can write it as
the LMI

ajxz—b - . —b: (a1);

= . L +i$j
j=1

a;x —b : - —=b ‘ : - (ap);



Revisit Recitation 2 and HW?2

® Recall that in Recitation 2 and HW2 (if you have done it correctly)
T

1 =z

i - < p?

we had a constraint [x X] =0and trX <p
® |s it an LMI?

® Sometimes LMIs are imposed on entire matrix, the SDP solvers
internally convert them into LMls in standard form



Revisit Recitation 2 and HW?2

Recall that in Recitation 2 and HW2 (if you have done it correctly)
T

g:‘)(] =0 and trX < p?

. 1
we had a constraint [x
Is it an LMI?
Sometimes LMIs are imposed on entire matrix, the SDP solvers
internally convert them into LMls in standard form
X X
X2 Xoo
First step: solvers define an concatenated variable
Y= (1= 21,Y2 = T2, y3 = X11, Y4 = X12, Y5 = Xo2)
Then

For illustrations let = (x1,22), and X = [

1 Xu1 Xl =|y1 y3s wya| =0

[1 xT:| 1 o oz 1y e
o X1z Xoo Y2 Y4 Y5



Revisit Recitation 2 and HW?2

® First note
1y v 1 . . 1. .01
vioys ya| = |- - | H+uy |1 - | ty2|- :
Y2 Y1 Y5 SR SR 1
+ys |- 1 | +yaf|- - {4y |- - | =0
Co 1. T
® Similarly

trX — p? = 0+ y1 [0] +y2 [0] + 5 [1] + 44 [0] + y5 [1] — p* <0, this
is also an LMI (x(—1) will make it > form)
® Combine them together using the LMI combination recipe

SDP and its many variants


https://tinyurl.com/5f68w9s6

Revisit Recitation 2 and HW?2

® First note
1y v 1 . . 1. .01
vioys ya| = |- - | H+uy |1 - | ty2|- :
Y2 Y1 Y5 SR SR 1
+ys |- 1 | +yaf|- - {4y |- - | =0
Co 1. T
® Similarly

trX — p® =0+ y1 [0] +y2 [0] +y3 [1] + 34 [0] + y5 [1] — p* < 0, this
is also an LMI (x(—1) will make it > form)
® Combine them together using the LMI combination recipe
Thus we have an LMI!
® Modern solvers basically does this thing in a very efficient way
® Just write it in the preliminary form, but your model should not
involve any norm, which is very costly
— See “Matrix completion problem: how to reconstruct a distorted
image” on https://tinyurl.com/5f68w9s6
SDP and its many variants


https://tinyurl.com/5f68w9s6
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Vector composition rule

® consider g: R* - RFand h: R* = R
o f(x) =h(g1(x),g2(x),...,grx(x)) with domjf convex
® fis convex if
g; convex for all 4, h convex and increasing in each argument
{gi concave for all 4, h convex and decreasing in each argument

® mplicit: we are establishing convexity on domf =-

— we only have to show the conditions on g1, ..., gx, h on domf
® example:
® f(x) =log Zle exp (gi(x)) is convex if all the g;s are convex

® Proof: h(z) =log Zle exp (z;) convex and increasing in each
argument, and each g; is convex, so h(g1(z),...,gx(x)) is convex

Vector composition
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Perspective function

Suppose = € R”

persp(z) = (z1,22,...,7n_1)/2,, dom(persp) = R" 1 x R, |
Note that persp : R® — R*~!

Consider a set C' € R™ such that C' C dom(persp)

Means that for any = € C the last component x,, > 0

We want to compute persp(C)



Convexity of a set is preserved under persp

¢ If C C dom(persp) convex set
- =

persp(C) = {persp(s) | z € C)
= S X2y, Ty nl (1,0, Tn_1, Tn ) EC}:
{(z1, 22 Tn-1)/Tn | (21 Trn—1, Tn ) } : convex

>0

Perspective of a point 11



Convexity of a set is preserved under persp

¢ If C C dom(persp) convex set
- =

persp(C) = {persp(s) | z € C)
= S X2y, Ty nl (1,0, Tn_1, Tn ) EC}:
{(z1, 22 Tn-1)/Tn | (21 Trn—1, Tn ) } : convex

>0

® If D is a convex set in R", what does persp~!(D) do?
® Formally persp (D) = {(z,t) € R"*1 | (z/t) € D,t > 0}

Perspective of a point 11



Simple example

* C={(z1,22,23) | (1 —3)* + (z2 — 3)* + (x5 — 3)* < 1}
o persp(C) = {(z1,22) /s | (31— 3 1 (as— 3 1 (2 — B < 1)

C = {(z1,22,23) | (21 — 32 + (22 — 3)> + (w3 — 3) < 1} persp(C) = {(z1,22) /w3 | (21 — 3)2 + (22— 3) + (23 — 3)2 < 1}

Figure: Simple perspective transformation



persp !(D) is convex if D is convex (you can skip this)

® D is a convex set in R™, show that persp!(D) is convex in R**!

® Goal: for any 6 € [0,1], and any u,v € persp~'(D) want to show
Ou + (1 — 0)v € persp (D)

® By definition persp~*(D) = {(z,t) € R""! | (z/t) € D,t > 0}

Perspective of a point 13



persp !(D) is convex if D is convex (you can skip this)

® D is a convex set in R™, show that persp!(D) is convex in R**!

Goal: for any 0 € [0, 1], and any u,v € persp~!(D) want to show
Ou + (1 — 0)v € persp (D)

® By definition persp~*(D) = {(z,t) € R""! | (z/t) € D,t > 0}

® Pick u,v € persp (D), then

— by definition (u1,...,un)/unt1 € D with upt1 > 0 and
(v1y.«+,Vn)/Unt1 € D and vp41 >0

— for convenience use notation ui., = (u1,...,un) € R™ and
V1 = (V1,...,0,) €ER"

Perspective of a point

13



persp !(D) is convex if D is convex (you can skip this)

® D is a convex set in R™, show that persp!(D) is convex in R**!

Goal: for any 0 € [0, 1], and any u,v € persp~!(D) want to show
Ou + (1 — 0)v € persp (D)

® By definition persp~*(D) = {(z,t) € R""! | (z/t) € D,t > 0}

® Pick u,v € persp (D), then

— by definition (u1,...,un)/unt1 € D with upt1 > 0 and
(v1y.«+,Vn)/Unt1 € D and vp41 >0

— for convenience use notation ui., = (u1,...,un) € R™ and
V1 = (V1,...,0,) €ER"

Goal: want to show
Ou+ (1 —0)
:0(u1:n7 un+1) + (1 - 9) (U1:n7 Un+1)
:(Hulz’ru eun-‘rl) + ((1 - G)Ul:n; (1 - 9)”n+1)
is in persp~ (D)

Perspective of a point 13



persp (D) is convex if D is convex (you can skip this)

® Goal: (Quy., + (1 — 0)v1.n, Otny1 + (1 — 0)v,41) is in persp (D)
® persp (D) = {(z,t) e R"" | (z/t) € D,t > 0}

Perspective of a point

14



persp (D) is convex if D is convex (you can skip this)

Goal: (Qui.m + (1 — 0)v1., Qi1 + (1 — 0)v,41) is in persp~ (D)
persp (D) = {(z,t) e R"* | (z/t) € D,t > 0}

® Equivalent to showing

(1)

1
Ouy.p, 1—0)v.,
Ouni1 + (1= 0)vpiq (Burin + Jorn)

= 0 ] ULy + [ (1-6) Vi € D
B eun+1 + (1 - e)vn—i-l i 9Un+1 + (1 - 9)U7z+1 n

and
L4 (2) 9un+1 + (]. - 9)vn+1 >0

Perspective of a point



persp (D) is convex if D is convex (you can skip this)

Goal: (Qui.m + (1 — 0)v1., Qi1 + (1 — 0)v,41) is in persp~ (D)
persp (D) = {(z,t) e R"* | (z/t) € D,t > 0}

® Equivalent to showing

(1)

1
Ouy.p, 1—0)v.,
Ouni1 + (1= 0)vpiq (Burin + Jorn)

= 0 ] ULy + [ (1-6) Vi € D
B eun+1 + (1 - e)vn—i-l i 9Un+1 + (1 - 9)U7z+1 n

and
L4 (2) 9un+1 + (]. - 9)vn+1 >0

® (2) is obviously true as up4+1 > 0 and v, 1 >0

Perspective of a point

14



persp (D) is convex if D is convex (you can skip this)

® We know that D is convex and u1.,/tupn+1 € D with w, 1 > 0 and
Ul:n/vn+1 €D and v,41 >0

e So for any a € [0, 1], we have auylﬂul:n +(1-a) vn1+1v1:” €D

Perspective of a point



persp (D) is convex if D is convex (you can skip this)

® We know that D is convex and u1.,/tupn+1 € D with w, 1 > 0 and
Ul:n/vn+1 €D and v,41 >0

1+1 Uip + (1 - Oé) - V1n € D

® So for any a € [0,1], we have «

Un Un+1
® Want to ensure & 1+1 = +1+(‘2_9)v - and
N1 (1-9) L
(1-a) oo = Gui(-e.; has a solution in & with & € [0,1]
® Thankfully & = %+1T(+19)v+1 is the only solution and it is clearly
in [0, 1]

Perspective of a point
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Perspective of a function

Perspective of a function

Outline
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Perspective of a function f

® Notation y1., = (Y1,Y2,- -+, Yn)

® f:R™ = R, then perspective of f is a function persp; : Rt R
defined by

1
persps( Y ) =Ynt1 X f Yin
~~ Yn+1
€Rn+1

with domain

dom(persp;) = {y € R"*! | ynﬂyl n € domf, yni1 > 0}
® If f is a convex function on domf then persp, is convex (on
dom(persp;))

® Recall that a function is convex if and only if its epigraph is a
convex set



persp; is convex if f is convex

® epi(persp;) = {(y,s) | persp,;(y) < s}, want to show that it is a
convex set

® fis a convex function, so epif = {(z,t) | f(z) <t} is convex set
e recall: persp~ (D) = {(z,7) | (z/r) € D, r > 0}

Perspective of a function

18



persp; is convex if f is convex

epi(persp;) = {(y, s) | persp;(y) < s}, want to show that it is a
convex set

f is a convex function, so epif = {(x,t) | f(x) <t} is convex set
recall: persp~ (D) = {(x,r) | (z/r) € D, r > 0}

So persp~!(epif) = {(z,t,7) | (x,t)/r € epif, r > 0}
IHX'IL
Define P = . - 1| which is an invertible permutation
1
matrix, P(x,t,r) = (x,r,t)

Will show epi(persp;) = P(persp™'(epif))

Perspective of a function

18



persp; is convex if f is convex

(y,s) € epi (perspf)
&persp(y) < s

SYnt1f (
Y

1
yl:n> S S5 Yn+1 >0
+1

n

1 S
<:>f Y | < y Ynt1 >0
Yn+1 Yn+1

1 S .
4 Yi:n, S eplfa Yn+1 >0
Yn+1 Yn+1

=

(yl:na 8) S epifa Ynt1 > 0
Yn+1

/*recall persp (D) = {(z,7) | /7 € D, ¥ > 0}/
& (Y1ns S, Yns1) € persp '(epif) /*multiply both sides by P*/
<:>(y1:na Yn+1, S) = (y7 S) € P(persp_l(epif))



persp; is convex if f is convex

(y,s) € epi (perspf)
<(y,8) €P (persp_l(epif))

We have epi(persp;) = P(persp ' (epif))

epif convex =-persp !(epif) is convex and persp~! preserves
convexity of a set

P (persp~!(epif)) is convex as P is affine (in fact invertible)

persp; is a convex function
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Take home messages

» GPT-4 was released on March 14, 2023

— You can access it via ChatGPT
— Is capable of doing crazy things
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Take home messages

GPT-4 was released on March 14, 2023

— You can access it via ChatGPT
— Is capable of doing crazy things

Sebastien Bubeck, one of the biggest names in
optimization+machine learning, gave a full-house talk on GPT-4 on
March 22, Wednesday at MIT CSAIL
— He and his research group had access to GPT-4 while it was being
trained without the filters
— His conclusion: “In short: time time to face it, the sparks of
Artificial General Intelligence have been ignited.”
— He and his coauthors released their findings at
https://arxiv.org/abs/2303.12712

Rumor is training of GPT-4 involved 100 trillion parameters
— Underlying optimization problem has to be the biggest ever
Key technical challenge: how to solve such large optimization

problem?

GPT-4 was trained using some first-order method


https://arxiv.org/abs/2303.12712
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First-order methods
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First-order and second-order methods

» Second-order methods
— Use second-order derivatives or their approximations
— Focus of 70s—-90s. Effective for smaller problems
— Require fewer iterations to solve the optimization problem to high
accuracy, even up to machine precision
» First-order methods
— Can be described and analyzed with gradients and subgradients
— Have massively accelerated the training of machine learning
— Requires at most matrix-vector multiplication
— No matrix factorization, thus memory is not an issue
— Sparse matrix-vector multiplication s well studied and can scale on
multi-threaded CPUs, GPUs, and distributed setting
— First-order methods are extremely simple; 2- or 3-line description.
Simpler methods are easy to try out and to parallelize



Deep-learning revolution is due to first-order methods

» GPT-3 was trained using the Adam algorithm
» GPT-4 was likely trained using some first-order method

Algorithm 8.7 The Adam algorithm
Require: Step size € (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, p; and pp in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant § used for numerical stabilization (Suggested default:
107%)
Require: Initial parameters 6
Initialize 1st and 2nd moment variables s =0, r =0
Initialize time step ¢t = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {a:“), BN m(’”)} with
corresponding targets y(®).
Compute gradient: g — Vg 3>, L(f(x?;0),y®)

te—t+1
Update biased first moment estimate: § < p1s+ (1 — p1)g mqmq“\“m
Update biased second moment estimate: r<pindlemacdl [t
A 2 s . .
Correct bias in first moment: § «— e "\;P\VQ(\ hj
Correct bias in second moment: # «— > N
. 2
Compute update: ‘ ﬁ (operations applied element-wise) N(S\q‘q
Apply update: 0 — 6 + ‘
end while

Figure: The Adam algorithm (Source: Deep Learning by Goodfellow, Bengio,
and Courville)

First-order methods



GPT-4 training

Was GPT-4 trained using first-order algorithms?

As an Al language model, | am not directly aware of my own training process. However, | & &

can tell you that GPT-3, the predecessor to GPT-4, was trained using a first-order
optimization algorithm called Adam (short for Adaptive Moment Estimation). Adam is an
extension of stochastic gradient descent and is a popular optimization algorithm for
training deep learning models. It is likely that GPT-4 also used a similar first-order
optimization algorithm, as they have been proven effective in training large-scale neural
networks like mine.

Figure: Usage of first-order methods in GPT-4 training



What is a first-order method?

» Want to solve
minimize  f(x)
r€eRd

» Algorithms that can be described and analyzed with gradients V f
and/or subgradients f’

First-order methods



What is a first-order method?

» Want to solve
minimize  f(x)
r€eRd

» Algorithms that can be described and analyzed with gradients V f
and/or subgradients f’

» (Sub)Gradient descent:

stepsize
/
Ti+1 = Ty - Ny fi(wi)
new iterate  prev. iterate subgradient at prev. iterate
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What is a first-order method?

» Want to solve
minimize  f(x)
r€eRd

» Algorithms that can be described and analyzed with gradients V f
and/or subgradients f’

» (Sub)Gradient descent:

stepsize
/
Tiy1 = x  — h f(@i)
new iterate  prev. iterate subgradient at prev. iterate

» Polyak’s heavy ball method: ;11 = z; — oy f'(%;) + Bi(x; — ;1)

First-order methods



What is a first-order method?

» Want to solve
minimize  f(x)
r€eRd

» Algorithms that can be described and analyzed with gradients V f
and/or subgradients f’

» (Sub)Gradient descent:

stepsize
/
Ti+1 = Ty - Ny fi(wi)
new iterate  prev. iterate subgradient at prev. iterate

» Polyak’s heavy ball method: ;11 = z; — oy f'(%;) + Bi(x; — ;1)

» Nesterov's fast gradient method:

1
Tiy1 = Yi — zvf(yi),
+i—1( )
i+1 = Xy — = Ti+1 — T4
Yir1 +1 it2 +1

First-order methods



Generic description of first-order methods

» Roughly speaking, all practical first-order methods can be written in
the following form:

pick initial point xg
z1 =z — h1,of (20)
xo = 21 — hoof'(20) — ho,1 f' (1)

w3 = x2 — haof (x0) — ha1f' (x1) — hg o f' (x2)
(GFOM)

N-1

IN =2IN-1— Z hivif' (2:)
i=0

return xy.

for some stepsizes or learning rates {h; ;}

» (Sub-)Gradient descent, Nesterov's accelerated method, Polyak’s
heavy ball method all lie in (GFOM)

First-order methods



Estimation of function parameters

» Someone asked in the class these algorithms need to know function
parameters L, ;1 and so on

» Are these algorithms just for theoretical analysis and completely
useless in practice?

First-order methods


https://arxiv.org/abs/2101.09545
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» Someone asked in the class these algorithms need to know function
parameters L, ;1 and so on

» Are these algorithms just for theoretical analysis and completely
useless in practice?

» Not at all!

» Roughly speaking:

» [ can be computed using line-search technique, cost is N + log cL
to reach the same termination tolerance

» 1 can be computed using logarithmic grid search, convergence rate
is the same with a change in the constant

— constant term worsens by a factor of 4
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Estimation of function parameters

» Someone asked in the class these algorithms need to know function
parameters L, ;1 and so on

» Are these algorithms just for theoretical analysis and completely
useless in practice?

» Not at all!

» Roughly speaking:

» [ can be computed using line-search technique, cost is N + log cL
to reach the same termination tolerance

» 1 can be computed using logarithmic grid search, convergence rate
is the same with a change in the constant

— constant term worsens by a factor of 4

» For more details, please see d’Aspremont, Alexandre, Damien Scieur,
and Adrien Taylor. "Acceleration methods." Foundations and
Trends(®) in Optimization 5.1-2 (2021): 1-245. Link:
https: //arziv. org/ abs/2101. 09545

First-order methods


https://arxiv.org/abs/2101.09545
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Subgradient

» Want to solve
minimize f(x),
rcRd

but f is not differentiable any more.

Figure: ||z||1 for z € R?



Subgradient

> Want to solve o
minimize x
nimize  f(),
but f is not differentiable any more.

» g e R%is a subgradient of convex f at x if

fly) > fla)+g"(y—z) VyeRL
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Subgradient

» Want to solve
minimize  f(x),
r€eRd

but f is not differentiable any more.
» g e R%is a subgradient of convex f at x if

fly) > fl@)+g"(y—z) VyeR".
» The subdifferential of convex f at x is
Of(x) ={g €RYf(y) > f(z) + g (y — ) forally e R},
i.e., Of (z) = {subgradients of f at x}.

Subgradient and subdifferential
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Subgradient

» Want to solve
minimize  f(x),
r€eRd

but f is not differentiable any more.
» g e R%is a subgradient of convex f at x if

fW)> @) +g"(y—2) VyeR:
» The subdifferential of convex f at x is

0f(x) = {g €R’|f(y) = f(2) + 9" (y — z) forally e R},
i.e., Of (z) = {subgradients of f at x}.
Of () is a closed convex set, can be empty

Of(z) # 0 if z € relint dom f
Convex f is differentiable at © < Jf(z) = {V f(x)}

* an optimal solution to MINIfz€ @) = o0eaf(a)

vV vyyvyy

Subgradient and subdifferential 12



Some notation

Fora e R, z e R, A, B CRY M e R™*¢:

aA={aalac A}
r+A={z+alac A}

MA={Mal|a€ A}
A+B={a+blac A, be B}

Subgradient and subdifferential 13



Subdifferential Hello World

» Consider f(x) = |z|

A 0f(x)

+1

\j

Figure: Subdifferential of |z

{-1}, =z<0 .
> Olz| = ¢ {1}, >0 = {Slgn(x)’ z 0
[-1,1], 2=0 1,1, 2=0

Subgradient and subdifferential 14



Subdifferential Hello World

> Forz >0, |z| ==, s0 0f(z) = () {1}
={-

» For x <0, |z| = —x, so 0f(x) =V f(x) 1}

Subgradient and subdifferential
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Subdifferential Hello World

» Forz >0, [z| =2, s0 0f(x) = Vf(x) = {1}
» Forx <0, |z| = —x, so 0f(z) = Vf(x) = {-1}
» For x = 0, |z| is not differentiable and gradient does not exist

» Want to find a subgradient at x = 0 such that
fy) > f(0)+g x (y—0) forany y € R.

Subgradient and subdifferential

15



Subdifferential Hello World

» Forxz >0, || =z, s0 df(z) =V f(z)={1}
» Forz <0, || =—x,s0 0f(z) =V [f(z) ={-1}
» For x = 0, |z| is not differentiable and gradient does not exist
» Want to find a subgradient at = 0 such that
f(y) = f(0) +g x (y—0) for any y € R.
» Note that f(y) = |y| = maxp._1<n<1 h Xy
» Check:

1. ‘ — 3| = MaXp:—1<h<1 h x (—3) = 3 where h* = —1
2. |5| = maxp.—1<n<1 h X (5) =5 where h* =1

Subgradient and subdifferential
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Subdifferential Hello World

» Forxz >0, || =z, s0 df(z) =V f(z)={1}
» Forz <0, || =—x,s0 0f(z) =V [f(z) ={-1}
» For x = 0, |z| is not differentiable and gradient does not exist
» Want to find a subgradient at = 0 such that
f(y) = f(0) +g x (y—0) for any y € R.
» Note that f(y) = |y| = maxp._1<n<1 h Xy
» Check:

1. ‘ — 3| = MaXp:—1<h<1 h x (—3) = 3 where h* = —1
2. |5| = maxp.—1<n<1 h X (5) =5 where h* =1

> So

= = h >qy, for —1<g<1
f@) =yl =, max hxyzgy for —1<g<1,

=f(y) > f(0) +g(y — 0), where —1<g<1,

> Hence, any g € [—1, 1] will be a subgradient of f at x =0
Subgradient and subdifferential

15



Subdifferential of ||z,

» Consider f(z) = ||z||1 which is not differentiable either

Figure: ||z||1 for x € R?

» Clearly it looks more complicated, how to compute its subgradient?
Subgradient and subdifferential 16



Computing subdifferential of ||z||; at x =0

> We have f(y) = [lylli = X2, il
» Goal: want to find a subgradient at x such that
f(y) = f(0) +g" (y — 0) for any y € R

f)=>"

i=1

il
Nigt”

maxp;:—1<h; <1 i Xy;



Computing subdifferential of ||z||; at x =0

> We have f(y) = [lylli = X2, il
» Goal: want to find a subgradient at x such that
f(y) = f(0) +g" (y — 0) for any y € R



Computing subdifferential of ||z||; at x =0

> We have f(y) = [lylli = X2, il
» Goal: want to find a subgradient at x such that
f(y) = f(0) +g" (y — 0) for any y € R

il
Nigt”

maxp;:—1<h; <1 i Xy;

d
max h; X y;
Z (hi:—lgh,;gl ¢ y’)

Fy)=>

i=1

i=1

= max hyy; +...+ max hgyq
hlz\hi|§1 hd:lhdlgl
N——— ———

>g1ya for |ga|<1 >gaya for |ga|<1



Computing subdifferential of ||z||; at x =0

> We have f(y) = [lylli = X2, il
» Goal: want to find a subgradient at x such that
f(y) = f(0) +g" (y — 0) for any y € R

fly) =

il
gt Nigt”

maxp;:—1<h; <1 i Xy;

d
max h; X y;
Z <hi:—1§hi§1 ¢ y’)

i=1

= max hyy; +...+ max hgyq

hlz\hi|§1 hd:lhdlgl
—— ——
>g1y1 for [ga|<1 >gaya for |ga|<1

> g1y1 + .-+ Gaya, where |g;| <1 forallie{1,...,d}



Computing subdifferential of ||z||; at x =0

> We have f(y) = [lylli = X2, il
» Goal: want to find a subgradient at x such that
f(y) = f(0) +g" (y — 0) for any y € R

fly) =

i=1

il
Nigt”

maxp;:—1<h; <1 i Xy;

d
max h; X y;
Z <hi:—1§hi§1 ¢ y’)

i=1

= max hyy; +...+ max hgyq
hlz\hi|§1 hd:lhdlgl
N———— —_———
>g1y1 for [ga|<1 >gaya for |ga|<1

> g1y1 + .-+ Gaya, where |g;| <1 forall i€ {1,...
=gy, where § = (71, ...,7a) with ||§]lec <1



Computing subdifferential of ||z||; at x =0

> So, we have f(y) > f(0)+g' (y —0) with |||l <1
» So any g with ||g]lcc < 1 will be a subgradient of ||z||; at z =0

Subgradient and subdifferential

18



Computing subdifferential of ||z||; at x =0

> So, we have f(y) > f(0)+g' (y —0) with |||l <1
» So any g with ||g]lcc < 1 will be a subgradient of ||z||; at z =0

» What about subgradient at any point z?
» For that we are going to use subgradient calculus rules

Subgradient and subdifferential

18



Outline

Computing subgradients using subgradient calculus

Computing subgradients using subgradient calculus
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Subgradient calculus

» Basic rules to compute subgradient or subdifferential
> We will take a look at three of them, there are many more

» Some references that you can take a look into for more details

— Chapter 2 of Minimization methods for non-differentiable functions
by N Z Shor
— Chapter 2 of Optimization and Nonsmooth Analysis by F H Clarke



Affine composition rule

Affine composition rule: Consider some convex function
h:R% — Rand define f(z) = h(Az +b). Then

0(f() = A" x [0h(2)].,_rzus

as long as Az +b € domh
Example Consider h(x) = |z| and f(z) = h(a"x —b) = |a"x — b



Affine composition rule

» Affine composition rule: Consider some convex function
h:R% — Rand define f(z) = h(Az +b). Then

O(f(x)) = AT X [0h(2)],—apps
as long as Az +b € domh
» Example Consider h(z) = |z| and f(z) = h(a'z —b) = |a "z — b|
> Recall

olz| = sign(z), z#0
TTVen, =0



Computing subdifferential of |a'z — b

> Want to apply 9 (f(z)) = AT x [0h(2)],_ 4,4y - for h(z) = || and
f(x)y=h(a"z—b)=|a"z—

of(x) =h(a"z —b) =dax —b|

Computing subgradients using subgradient calculus

22



Computing subdifferential of |a'z — b

> Want to apply 9 (f(z)) = AT x [0h(2)],_ 4,4y - for h(z) = || and
f(x)y=h(a"z—b)=|a"z—

hia"z —b) =0|a"z —b|
(a")" x [0h(2)]

Of (z)

z=alz—b

Computing subgradients using subgradient calculus 22



Computing subdifferential of |a'z — b

> Want to apply 9 (f(z)) = AT x [0h(2)],_ 4,4y - for h(z) = || and
f(x)y=h(a"z—b)=|a"z—

of(x) =h(a"z —b) =dax —b|
=(a")" x [0h(2)]
=ax [9]z]]

z=alz—b

z=aTlxz—b

Computing subgradients using subgradient calculus
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Computing subdifferential of |a'z — b
> Want to apply 9 (f(z)) = AT x [0h(2)],_ 4,4y - for h(z) = || and
f(x)y=h(a"z—b)=|a"z—

of(x) =h(a"z —b) =dax —b|
=(a")" x [0h(2)]

=aXx [a|z|]z:a7x—b

. sign(z), z#0
SO, e=of

z=alz—b

Computing subgradients using subgradient calculus
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Computing subdifferential of |a'z — b
> Want to apply 9 (f(z)) = AT x [0h(2)],_ 4,4y - for h(z) = || and
f(x)y=h(a"z—b)=|a"z—

of(x) =h(a"z —b) =dax —b|
=(a")" x [0h(2)]

=aXx [a|z|]z:aTz—b

. sign(z), z#0
SO, e=of

¥ T, _ T, _
:ax{slgn(ax b), a' x—b#0

z=alz—b

[—1,1], a'r—b=0

Computing subgradients using subgradient calculus
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Computing subdifferential of |a'z — b
> Want to apply 9 (f(z)) = AT x [0h(2)],_ 4,4y - for h(z) = || and
f(x)y=h(a"z—b)=|a"z—

of(x) =h(a"z —b) =dax —b|
=(a")" x [0h(2)]

=ax 02| _,7ss

" sign(z), z#0
’ [_17 1]’ z=0 z=aTxz—b

¥ T, _ T, _
:ax{slgn(ax b), a' x—b#0

z=alz—b

[—1,1], a'r—b=0

_ Jaxsign(a'z—b), a'z—b#0
~ax[-1,1], a'r—b=0

Computing subgradients using subgradient calculus 22



Computing subdifferential of |a'z — b

: T, _ T, _
DTz — b| = asign(a' x —b), aTx b#0
a[-1,1], ax—b=0



Sum rule for computing subdifferential

» Sum rule: Let h: R? - R and q: R? — R be convex functions and
let a, 8 > 0. Define

f(z) = ah(x) + By(x).
Then for any x € (relint dom h) ((relint dom ¢), we have

Of (x) = adh(z) + Bog(x).

Computing subgradients using subgradient calculus
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Sum rule for computing subdifferential

» Sum rule: Let h: R? - R and q: R? — R be convex functions and
let a, 8 > 0. Define

f(z) = ah(x) + By(x).
Then for any x € (relint dom h) ((relint dom ¢), we have
Of (x) = adh(z) + Bog(x).

> Example: Consider f(z) = Y"1", |a] x — b;|, what is the
subdifferential?

Computing subgradients using subgradient calculus 24



Computing subdifferential of > |a]z — b;|

» Recall we showed that

: T, _ T, _
DTz — b = asign(a' x —b), aTx b#0
a[-1,1], ax—b=0



Computing subdifferential of > |a]z — b;|

» Recall we showed that

: T, _ T, _
DTz — b = asign(a' x —b), aTx b#0
a[-1,1], ax—b=0

» So,

a; [-1,1], a]x—b; =0

o i aisign(a;rm—bi), a;'—x—bi;«éo
03 iat =35
i=1 i=1



Computing subdifferential of > |a]z — b;|

» Recall we showed that

: T, _ T, _
8|a-|—x_b|:{a51gn(a x—>), a'x—b#0

al-1,1], aTo— b0
» So,
m m a; Sign(a—-rﬁr — bz), a—.l—x _ bz 7§ 0
8 T *bz = g [
;|azx | ;{a’i [_Ll]v az—'l—x_bi:O

» Special case

Azl =0 ( e @~ 0|>
i=1

B Zm: e;sign(e) ¥) = e; x sign(z;), e/r=2;#0
B e; [—1,1], ejr=2,=0

%

NE



Subdifferential of pointwise maximum

» Pointwise maximum. Suppose f; : R = R for i = 1,...,m. Define
f(z) =max;=1 __m fi(z). Then for any 2 € dom f it holds that

Of(x) = convhull | | 9fi(x)

i€active(x)

where active(x) denotes index set of the functions that attain
maximum at x

Computing subgradients using subgradient calculus
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Subdifferential of pointwise maximum

» Pointwise maximum. Suppose f; : R = R for i = 1,...,m. Define
f(z) =max;=1 __m fi(z). Then for any 2 € dom f it holds that

Of(x) = convhull | | 9fi(x)

i€active(x)

where active(x) denotes index set of the functions that attain
maximum at x

> Better to understand this as an algorithm

We have a point x where we want to compute 9f(x)

Evaluate the function f at x

Find out which functions fixs attain the maximum at z, i.e.,

fi* (:C) = maXi;=1,...,m fz (:E)

Construct active(z) = {i* | fir(z) = f(z)}

Compute the subdifferential df;(z) of all the f;s such that

i € active(x)

Construct union of all those subdifferentials: S = U, c,ceive(a) 0i (%)
Construct the convex hull of S

Computing subgradients using subgradient calculus
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Subdifferential of pointwise maximum

» Pointwise maximum. Suppose f; : RY - R fori=1,...,m. Define
f(z) = max;=1 __m fi(x). Then for any 2 € dom f it holds that

Of(x) = convhull | | 9fi(x)

i€active(x)

where active(x) denotes index set of the functions that attain
maximum at z

» While it looks complicated, in practice, we do not need the entire
subdifferential to run a subgradient-based algorithm

Computing subgradients using subgradient calculus

27



Subdifferential of pointwise maximum

» Pointwise maximum. Suppose f; : RY - R fori=1,...,m. Define
f(z) = max;=1 __m fi(x). Then for any 2 € dom f it holds that

Of(x) = convhull | | 9fi(x)

i€active(x)

where active(x) denotes index set of the functions that attain
maximum at x

» While it looks complicated, in practice, we do not need the entire
subdifferential to run a subgradient-based algorithm

» We just need one subgradient f’(z), to that goal we can modify the
algorithm before as follows:
— We have a point x where we want to compute one subgradient
— Evaluate the function f at z
— Find out one function f;x that attains the maximum at z, i.e.,
fir (x) = maxi=1,...,.m fi(z)
— Compute one point in the subdifferential of fi«(z), i.e, f'(z) € 0f(z)

Computing subgradients using subgradient calculus

27



Computing subgradient of ||Ar — b/~

> f(x) = | Az — bllco = maxi=1___m |a; x — b

» Applying the max rule we have

0f(x) = convhull | | 9la]x — b,

i€active(x)

where

dlaj x —b;| = a;sign(al x —b;), ajz—0; #0
i i a; [-1,1], a,;rx—bi =0

» One subgradient is given by

Fla)=% sign(aj.z — bi-), aj.x—b; #0
a;+ X any number in[—1,1], alz—b; =

where |a). @ — b | = max;—1,__m |a] z — by



Looking beyond the midterm

Looking beyond the midterm

Outline
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Midterm

» We will release the grade early next week

» Do not worry about the midterm grade, you will be fine
» In a graduate course, grade does not matter

» We are all graduate students

— Our goal is apply the subject material to our research
— Everything else is noise



A poem by GPT-4

» Famous quote by Rumi:
Let go of sorrow,
for whatever you have is for you.
Whatever you have lost,
will come back in another form.
The wound is the crack,
where the Light enters your heart.

» This is already very profound.

» | asked ChatGPT (GPT-4) to make it a rhyming poem in the style
of Rumi himself.



ChatGPT (GPT-4) output

& Can you please write the following quotes by Rumi as a thyming poem in the style of Rumi
himself?

Let go of sorrow, for
whatever you have is for you.
Whatever you have lost,

will come back in another form.
The wound is the crack,

where the Light enters your heart.

Release your sorrows, let them fly,

For all you hold is yours, thereby,
In every loss and tear that's shed,
New forms arise, no need for dread.

The dance of life, forever spinning,
Transforming hearts, new chapters beginning,
Embrace the change, let go of fear,

For love's embrace is ever near.

The wounds that cause your heart to break,
Are sacred paths for light to take,

Through every crack, in every scar,

The light shines bright, it's never far.

In this play of loss and gain,
The heart finds strength, learns to sustain,
For in the wounds, the cracks, the strife,

The light shines through, revealing life.

Looking beyond the midterm



ChatGPT (GPT-4) output

Release your sorrows, let them fly,
For all you hold is yours, thereby,
In every loss and tear that's shed,

New forms arise, no need for dread.

The dance of life, forever spinning,
Transforming hearts, new chapters beginning,
Embrace the change, let go of fear,

For love's embrace is ever near.

The wounds that cause your heart to break,
Are sacred paths for light to take,

Through every crack, in every scar,

The light shines bright, it's never far.

In this play of loss and gain,

The heart finds strength, learns to sustain,
For in the wounds, the cracks, the strife,
The light shines through, revealing life.



ChatGPT (GPT-4) output

Release your sorrows, let them fly,
For all you hold is yours, thereby,
In every loss and tear that's shed,

New forms arise, no need for dread.

The dance of life, forever spinning,
Transforming hearts, new chapters beginning,
Embrace the change, let go of fear,

For love's embrace is ever near.

The wounds that cause your heart to break,
Are sacred paths for light to take,

Through every crack, in every scar,

The light shines bright, it's never far.

In this play of loss and gain,

The heart finds strength, learns to sustain,
For in the wounds, the cracks, the strife,
The light shines through, revealing life.

> Key takeway: a first-order method made this poem possible!



15.084/6.7220 Recitation 7: Subgradient
Methods for Constrained Optimization

“The more you know who you are and what you want, the less you
let things upset you."-Lost in translation (2003)
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Project

Most project proposals are approved (please check the comments)

Most project proposals are research oriented and a few review based
projects

Please work consistently on the project, the final project constitutes
a significant portion of your overall grade (30%)

Please send me an email any time if you want to chat about the
project, | am very happy to help

The page limit of 10 pages excludes appendix
You can have an appendix which does not have any page limit
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Recap of subgradient

> Want to solve
minimize  f(x),
rcRd

but f is not differentiable any more.

Figure: ||lz||1 for x € R?

Recap of subgradient



Recap of subgradient

> Assume f is proper i.e., dom f = {z | f(z) < oo} #
» g c R%is a subgradient of convex f at x if

fy) = fz)+g' (y—x) for all y € R™.



Recap of subgradient

> Assume f is proper i.e., dom f = {z | f(z) < oo} #
» g c R%is a subgradient of convex f at x if

fy) = fz)+g' (y—x) for all y € R™.

» The subdifferential of convex f at x is

Of (@) ={g eRf(y) > f(x)+ g (y— =) forally e R},

i.e., Of (z) = {subgradients of f at x}.

» Common notation: f’(z) denotes one element of df(x)



Recap of subgradient

Of (x) ={g eRYf(y) > f(z) + g (y—x) forallye R},

» Of(x) is a closed convex set, can be empty
> If z ¢ dom f then Of(z) =0
> Convex f is differentiable at < 0f(z) = {Vf(2)}

> 2 an optimal solution to M!NIMIz€ f@) so0e of (z*)

Recap of subgradient



When would a subgradient exist?

> 0f(z) # 0 if z € relint dom f



When would a subgradient exist?

> 0f(z) # 0 if z € relint dom f

> Recall
— aff C is smallest affine set (i.e., translated subspace) that contains
the set C
—relintC ={z € C| B(z,r)aff C C C for some r > 0}



When would a subgradient exist?

> 0f(z) # 0 if z € relint dom f

> Recall
— aff C is smallest affine set (i.e., translated subspace) that contains
the set C
—relintC ={z € C| B(z,r)aff C C C for some r > 0}

Figure: relintC



Computing one subgradient of pointwise maximum

» Consider f(x) = max;—1,. m fi(z), given a point € relint dom f
how do we compute one subgradient f’(x)?



Computing one subgradient of pointwise maximum

» Consider f(x) = max;—1,. m fi(z), given a point € relint dom f
how do we compute one subgradient f’(x)?

» We just need one subgradient f’(x), to that goal we can modify the
algorithm before as follows:

— We have a point x where we want to compute one subgradient



Computing one subgradient of pointwise maximum

» Consider f(x) = max;—1,. m fi(z), given a point € relint dom f
how do we compute one subgradient f’(x)?
» We just need one subgradient f’(x), to that goal we can modify the
algorithm before as follows:
— We have a point x where we want to compute one subgradient

— Evaluate the function f at x



Computing one subgradient of pointwise maximum

» Consider f(x) = max;—1,. m fi(z), given a point € relint dom f
how do we compute one subgradient f’(x)?
» We just need one subgradient f’(x), to that goal we can modify the
algorithm before as follows:
— We have a point x where we want to compute one subgradient
— Evaluate the function f at x

— Find out one function f;x that attains the maximum at z, i.e.,
fir () = max;=1,...,.m fi(x)



Computing one subgradient of pointwise maximum

» Consider f(x) = max;—1,. m fi(z), given a point € relint dom f
how do we compute one subgradient f’(x)?

» We just need one subgradient f’(x), to that goal we can modify the
algorithm before as follows:
— We have a point x where we want to compute one subgradient
— Evaluate the function f at x
— Find out one function f;x that attains the maximum at z, i.e.,
fir () = max;=1,...,.m fi(x)

— Compute one point in the subdifferential of fi«(z), i.e, f'(x) € 0f(x)
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Solving constrained optimization problems via subgradients

Solving constrained optimization problems via subgradients
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Constrained convex optimization problem

» We want to solve

minimize T
= zER? fO( )

subjectto z e

where fj is a convex function and C'is a closed convex set

Solving constrained optimization problems via subgradients

11



Constrained convex optimization problem

» We want to solve

minimize T
= z€ERC fO( )
subject to z € C

where fj is a convex function and C'is a closed convex set

» We can write the problem equivalently as

Pt = ( minimize  fo(z) + dc () )

reRd ’

where d¢(z) is equal to 0 if x € C and equal to 0o if z ¢ C.

» Jc(x) is called indicator function of C' and is a closed convex
function if C is a closed and convex set

Solving constrained optimization problems via subgradients

11



Indicator function of a convex set is convex

» Let C' is closed and convex

» The indicator function d¢ is convex because its epigraph epidc =
{(z,t) | x € dom ¢, dc(z) <t} = {(z,t) | x € C, 0 < ¢t} is convex



Subdifferential of indicator function

> Given x we want to find 9d¢c(x), where C is closed and convex
> If z ¢ domdc = C, then 3¢ (z) =0

» Now consider € dom dc = C, then we have do(z) = 0. If
g € 9d¢c(x) then it will satisfy

Sc(y) > dc(x)+g" (y —z), forally € C
=0

<0 > gT(y—;zc)7 forally € C

(for y ¢ C it is automatically satisfied)

Solving constrained optimization problems via subgradients

13



Subdifferential of indicator function

» Combining everything

-
glg' (y—x)<0forallye C}, xzeC,
a&c(@:{é l97(y—2) } o

» Subdifferential of indicator function is so important that it has been
given a special name: it is called the normal cone of C



Necessary and sufficient conditions for optimality

» \We want to solve

P = RRAIE to fo(@) — minimize (fo(z) + dc(x))
subjectto xz€C w€R¢
(P)
where fj is a proper (dom f # o) convex function and C'is a
closed convex set

> Assumption: relint dom f [\ relintC # ()



Necessary and sufficient conditions for optimality

We want to solve

= [ MmmEe Sl N inimize (fo(x) + G0 (2)
subjectto xz€C w€R¢
(P)
where fj is a proper (dom f # o) convex function and C'is a
closed convex set

> Assumption: relint dom f [\ relintC # ()

» Then a* € C is an optimal solution to (P) if and only if

0 € Of(2*) + B6¢(2*)

i.e, there is some g € df(z*) such that —g € 9d¢c(x*)

For a proof please see Theorem 3.67 of Beck, Amir. First-order
methods in optimization. Society for Industrial and Applied
Mathematics, 2017.



Alternate subgradient method

Alternate subgradient method

Outline
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Subgradient method for constrained optimization

» Consider the problem

minimize x
o minimize o)
subject to  fi(z) <0 i=1,...,m,
where f; is closed (epi f; is closed set), proper, and convex for
i =0,...,m. Assume that a finite optimal solution exists.

Alternate subgradient method
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Subgradient method for constrained optimization

» Consider the problem

minimize  fo(z)
p* = z€R?
subject to  fi(z) <0 i=1,...,m,

where f; is closed (epi f; is closed set), proper, and convex for
i =0,...,m. Assume that a finite optimal solution exists.

» We can write f;(z) <0 fori=1,...,m compactly as
h(z) £ max;e(1,....m} fi(x), which is convex

Alternate subgradient method

17



Subgradient method for constrained optimization

» Consider the problem

minimize  fo(z)
p* = z€R?
subject to  fi(z) <0 i=1,...,m,

where f; is closed (epi f; is closed set), proper, and convex for
i =0,...,m. Assume that a finite optimal solution exists.

» We can write f;(z) <0 fori=1,...,m compactly as
h(z) £ max;e(1,....m} fi(x), which is convex

» Then o
oo (i fole)
subject to  h(z) < 0.

Alternate subgradient method

17



Subgradient method for constrained optimization

> Alternate subgradient algorithm for solving min,{fo(z) | h(x) < 0}
» Initialize at some z¢ € R?

Alternate subgradient method
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Subgradient method for constrained optimization

> Alternate subgradient algorithm for solving min,{fo(z) | h(x) < 0}
» Initialize at some z¢ € R?

» For k=0,1,2,... run

Tk41 = Tk — Sk Yk,
>0

until optimality condition is satisfied, where

) folar), if zy feasible < h(xy) <0
Ik = R (xr), if zy infeasible < h(xy) >0

Alternate subgradient method 18



Subgradient method for constrained optimization

> Alternate subgradient algorithm for solving min,{fo(z) | h(x) < 0}
» Initialize at some z¢ € R?

» For k=0,1,2,... run

Tk41 = Tk — Sk Yk,
>0

until optimality condition is satisfied, where

) folar), if zy feasible < h(xy) <0
Ik = R (xr), if zy infeasible < h(xy) >0

» Intuition:
— If the current point xj is feasible, we use an objective subgradient
f4(zk), as if the problem were unconstrained
— If the current point xj, is infeasible, we choose any violated
constraint, and use a subgradient of the associated constraint
function
» We will investigate the convergence of this algorithm
Alternate subgradient method

18



Setup and notation

» Assumptions

— We have a strictly feasible point zst such that h(zs) < 0 (Slater’s
condition) that is suboptimal fo(zf) > p*

Alternate subgradient method
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Setup and notation

» Assumptions

— We have a strictly feasible point zst such that h(zs) < 0 (Slater’s
condition) that is suboptimal fo(zf) > p*

— There is one optimal solution z* such that ||zo — z.|| < R and
o — ztl| < R

Alternate subgradient method
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Setup and notation

» Assumptions
— We have a strictly feasible point zst such that h(zs) < 0 (Slater’s
condition) that is suboptimal fo(zf) > p*
— There is one optimal solution z* such that ||zo — z.|| < R and
o — ztl| < R

— The subgradient at the iterates are bounded, i.e., there is some
G > 0 such that for all k =0,1,... we have ||gx|]| < G

Alternate subgradient method

19



Setup and notation

» Assumptions

— We have a strictly feasible point zst such that h(zs) < 0 (Slater’s
condition) that is suboptimal fo(zf) > p*

— There is one optimal solution z* such that ||zo — z.|| < R and
o — ztl| < R

— The subgradient at the iterates are bounded, i.e., there is some
G > 0 such that for all k =0,1,... we have ||gx|]| < G

— The stepsize is square summable but not summable i.e.,
limp— 00 Zf:o s2 is finite but limg— o Zf:o 8; = 00 e.g,
si =1/(i +1)

Alternate subgradient method

19



Setup and notation

» Assumptions
— We have a strictly feasible point zst such that h(zs) < 0 (Slater’s
condition) that is suboptimal fo(zf) > p*

— There is one optimal solution z* such that ||zo — z.|| < R and
o — ztl| < R

The subgradient at the iterates are bounded, i.e., there is some
G > 0 such that for all K =0,1,... we have |lgi]| < G

The stepsize is square summable but not summable i.e.,

limp— 00 Zf:o s2 is finite but limg— o Zf:o 8; = 00 e.g,

si =1/(i +1)

» We keep track of the best feasible point found so far via
fo ) = min{fo(x;) | z; feasible for i =0,1,...,k}

Alternate subgradient method
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Setup and notation

» Assumptions
— We have a strictly feasible point zst such that h(zs) < 0 (Slater’s
condition) that is suboptimal fo(zf) > p*

— There is one optimal solution z* such that ||zo — z.|| < R and
o — ztl| < R

The subgradient at the iterates are bounded, i.e., there is some
G > 0 such that for all K =0,1,... we have |lgi]| < G

The stepsize is square summable but not summable i.e.,

limp— 00 Zf:o s2 is finite but limg— o Zf:o 8; = 00 e.g,

si =1/(i +1)

» We keep track of the best feasible point found so far via
fo ) = min{fo(x;) | z; feasible for i =0,1,...,k}

» Convergence result: limj,_, fj, =p*

Alternate subgradient method
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Proof of alternate subgradient method

Proof of alternate subgradient method
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Convergence proof

» We will do a proof by contradiction

» Assume limy oo f§,, > p* (by definition fJ, can not be strictly
smaller than p*)

Proof of alternate subgradient method
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Convergence proof

» We will do a proof by contradiction

> Assume limy_,o fg ;> P* (by definition fg, can not be strictly
smaller than p*)

> Now
lim fg, >p*
k—oo 7
& for = p* + e for some e > 0 for all k

< folx;) > p* + ¢, for some € > 0 for all feasible x; with ¢ € {0,...,k}
(divergence)

Proof of alternate subgradient method 21



Convergence proof

» We will do a proof by contradiction

> Assume limy_,o fg ;> P* (by definition fg, can not be strictly
smaller than p*)

> Now
lim fg, >p*
k—oo 7
& for = p* + e for some e > 0 for all k

< folx;) > p* + ¢, for some € > 0 for all feasible x; with ¢ € {0,...,k}
(divergence)

» As a logical statement:
Jes0 Yren Vieqo,1,... k} Vafeasible fo(Ti) —p* > €

Proof of alternate subgradient method 21



Convergence proof

» We will do a proof by contradiction

» Assume limy oo f§,, > p* (by definition fJ, can not be strictly
smaller than p*)

> Now
lim fg, >p*
k—oo 7
& for = p* + e for some e > 0 for all k
& fo(zi) > p* + ¢, for some € > 0 for all feasible z; with ¢ € {0,...,k}
(divergence)
> As a logical statement:
Jes0 Yren Vieqo,1,... k} Vafeasible fo(Ti) —p* > €

» We will show that something bad will happen we assume
(divergence).

Proof of alternate subgradient method 21



Convex combination of z* and x4

» Consider the point Z = (1 — 0)z* + fxg where 0 € [0,1]

Proof of alternate subgradient method

22



Convex combination of z* and z

> Consider the point & = (1 — )z* + Oz where 6 € [0, 1]

» We have

fo() =

fo((1—
<(1-
= fo(

717*

Proof of alternate subgradient method

)™ + Oxgt)
0)fo(z*) + 0 fo(wsr)
*) 40 (fo(zs) — fo(x™))

>0

22



Convex combination of z* and z

> Consider the point & = (1 — )z* + Oz where 6 € [0, 1]
» We have

fo(Z) = fo (1 — O)z™ + Ozg)
< (1 =0)fo(z*) + 0 fo(xst)
_fo( *) 40 (fo(zs) — fo(x™))

= >0

» Set # := min {1, gm} very cleverly chosen

~ * i 57
fo(gj) < P +H11n{1; 9 fo(xsf) p*

} (olest) — )
<p'+ *WW

Sp*+§

Proof of alternate subgradient method
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Function value of 7

» So we have

0< fo(z) —p* < (subopt_xtilde)

|

» 1 is 5-suboptimal



Feasibility of ©

> We have Z = (1 — 0)a* + Oz where

R 1
9 = Imin {1, Em} S (0, ].]
» 1 is a convex combination of z* € C and 2 € C,s0o T € C

Proof of alternate subgradient method
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Feasibility of ©

> We have Z = (1 — 0)a* + Oz where
0= mln{l, 2m} € (0,1]
» 1 is a convex combination of z* € C and 2 € C,s0o T € C
» Now h(Z) =h((1 —0)z* + Oxs) < (1 —0) h(x™) +0 h(zs) < 0
—_—  ——

<0 <0
because 6 € (0, 1]

Proof of alternate subgradient method 24



Feasibility of ©

> We have Z = (1 — 9)33* + Oz where

’2 fo(rsf) fx*) < (0,1}
» 1 is a convex combination of z* € C and 2 € C,s0o T € C

> Now h(F) = h (1= 0)a* +bast) < (1= 6) h(a*) +6 hlzwr) < 0

0 —mm{l

<0 <0
because 6 € (0, 1]
» So there is some v > 0 such that
h(z) < —y (strict_fsblt x tilde)

Proof of alternate subgradient method

24



Feasibility of ©

> We have Z = (1 — 9)33* + Oz where

’2 fo(rsf) fx*) < (0,1}
» 1 is a convex combination of z* € C and 2 € C,s0o T € C

> Now h(F) = h (1= 0)a* +bast) < (1= 6) h(a*) +6 hlzwr) < 0

0 —mm{l

<0 <0
because 6 € (0, 1]
» So there is some v > 0 such that
h(z) < —y (strict_fsblt x tilde)

> Next, we will show every iterate satisfies

|zipr — 2)* < [lai — 2> + s )lgil> — s B
N

>0

Proof of alternate subgradient method 24



Case 1: z, feasible
» Note that

— From (divergence) we have — fo(z;) +

pr<—
— From (subopt_xtilde) we have fo(Z) —p* < §
— Adding the last two together fo(Z) — fo(z:) < —



Case 1: z, feasible
» Note that

— From (divergence) we have — fo(z;) +

p* < —eand
— From (subopt_xtilde) we have fo(Z) —p* < §
— Adding the last two together fo(%) — fo(x:) < —§
> x; feasible means h(z;) <0
any y

— So here we pick g; € dfo(x:), so fo(y) > fo(z:) + g; (y — x;) for



Case 1: z, feasible

> Note that
— From (divergence) we have — fo(x;) + p* < —e and
— From (subopt_xtilde) we have fo(Z) —p* < §
— Adding the last two together fo(%) — fo(x:) < —§

> x; feasible means h(z;) <0
— So here we pick g; € dfo(x:), so fo(y) > fo(z:) + g; (y — x;) for

any y
— Set y = & yields fo(Z) — fo(x:) > g (2 — x)
— Note that
lzivr — Z)* = i — sigi — &|° = [[(z: — &) — 54|

= [lws — &)1 + 87 llgill* — 25097 (2: — 7)

= ||z — Z[° + s [lgil* + 281 g/ (& — 1)
—_—
<fo(&)—fo(zi)

< i — 2”4 57 lgsll® + 28 (fo(&) — fol(x:))
—_—

S_

wln

~112 L 2 2
<lzi = 2017 + sillgill™ + si(=e)



Case 2: z; infeasible

> Observe
— x; infeasible means h(z;) > 0 & —h(z;) <
— From (strict_fsblt_x_tilde), we have h
— Adding the last two we have h(Z) — h(z;)

Proof of alternate subgradient method

<0
() < —v
< —v
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Case 2: z; infeasible

» Observe

— x; infeasible means h(z;) > 0 < —h(z;) <0
— From (strict_fsblt_x tilde), we have h(Z) < —v
<=y

— Adding the last two we have h(Z) — h(z
» Also, when x; infeasible, we pick

= gi € Oh(x1), so h(y) > h(x:) + gi' (y —

i)

z;) for any y

— Set y = & yields h(Z) — h(z:) > g; (& — ;)

Proof of alternate subgradient method
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Case 2: z; infeasible

> Observe
— x; infeasible means h(z;) > 0 < —h(z;) <0
— From (strict_fsblt_x tilde), we have h(Z) < —v
— Adding the last two we have h(Z) — h(z;) < —v

» Also, when x; infeasible, we pick
— gi € Oh(x:), 50 h(y) > h(x:) + g (y — ;) for any y
— Set y = & yields h(Z) — h(z:) > g; (& — ;)
— Note that

[2ip1 — 2)° = |2 — sigi — 2))* = |(z: — &) — sigill®
= ||z — 2|* + sZ||gil|* — 2519, (i — %)
= ||z — 2|* + sZ||gill* + 251 97 (& — x4)

—_—

<h(Z)—h(z:)

< lwi = @)1 + s3llgsl|* + 2s: ((Z) — (x:))
—_——

<—v
<z = &1 + s¥lgll” + 5: (—27)

Proof of alternate subgradient method
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Combine the last two steps

> When h(z;) < 0 we have
|lwisr = 2|7 < llg — 2l + s7[lgs|* + si(—e)

» When h(x;) > 0 we have
lzisr = 2)* < llws — 21 + s3llgsll* + 53 (=27)

> define — = max(—e, —27), clearly 3 >0

» So, no matter x; is feasible or infeasible, we have for all ¢ = 0,1,...

lzisr = 2|* < flws = 21 + s7llgll* — 548



A telescoping sum

» So, no matter x; is feasible or infeasible, we have for all ¢ =0,1,...

v = 2| < llas — 2l + 57 gil® — 5:8

Proof of alternate subgradient method

28



A telescoping sum
» So, no matter x; is feasible or infeasible, we have for all ¢ =0,1,...
~ 112 ~112 2 2
|2iv1 — Z[|° < [z — Z[|° + s7l|gs[|° — s:8
» Lets do a telescoping sum ranging over i =0,1,...,k

lz1 = &% = [lwo — 2|1 < sgllgoll* — 508

lz2 = &|* — [lo1 — 2|1* < sillgul* — 18

ok — &)* = -1 — &> < sz llgr—1* — 518

zrsr = ZI* = llzk — 2)? < sillgwl® — suB

Proof of alternate subgradient method
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A telescoping sum
» So, no matter x; is feasible or infeasible, we have for all ¢ =0,1,...
~ 112 ~112 2 2
|2iv1 — Z[|° < [z — Z[|° + s7l|gs[|° — s:8
» Lets do a telescoping sum ranging over i =0,1,...,k

lz1 = &% = [lwo — 2|1 < sgllgoll* — 508

lz2 = &|* — [lo1 — 2|1* < sillgul* — 18

e — 217 = llwn—1 — 21 < sz llge—1l* — s6-18

zrsr = ZI* = llzk — 2)? < sillgwl® — suB

» Adding the inequalities above yields
k k
lzsr = E* = oo — 2 <Y stllgil® =B s
i=0 i=0

Proof of alternate subgradient method

28



Arriving at the contradiction

» Adding the inequalities above yields

k k
lzrsr = 2% — oo — 2> < Y sillgill® =8 s
i=0 i=0

k k
Slappr — 2)* < oo — 212+ 57 gil> =B si
— o =0 oY i=0
<R2 <@G2?

k k_
SRQ‘FGQZS?—BZ&‘
i=0

=0



Arriving at the contradiction

» We have shown

k k
|wpr —Z° <R+ G*Y s7—BY s
=0 =0
k k
:>0§R2+G2Zsf—ﬂz,si
=0 =0

k k
@ﬁZsi < R? —1—(;222512
i=0 i=0

~—
finite,>0 , \ ,

0o finite

k k
= lim s; < R*+ G? lim s?
5 k— o0 2% ' = k— 00 z; ¢

= =

» But this leads to contradiction because as k& — oo, the LHS will
blow up, but RHS will converge to a finite number
» So, our initial assumption limy,_, f; > p* cannot be correct

*

> Only possibility is: limy_oc fg, =P



v

Summary of the proof structure

This type of proof structure is extremely common in optimization

We assumed opposite of what we wanted to prove, goal is a proof by
contradiction

Created T a convex combination of 2* and x4
Showed that Z is €/2 suboptimal and —~ strictly feasible
Then showed that

v = 21 < llzs = ZI° + s7lgil® — 5:8

where —f = max(—¢, —27)
Did a telescoping sum which gave us

k k
BZSi < R2+GQZSZZ,
i=0 i=0

leading to contradiction



Performance of subgradient methods in practice

» In practice the stepsizes siare often chosen based on heuristic - the
homework gives one such heuristic

» The subgradient method can be (and often is) slow in practice
compared to second-order methods

optimality gap

0 2500 5000 7500 10000
k

Figure: Typical convergence behavior of subgradient-based methods on solving
linear programs



Performance of subgradient methods in practice

05
0.4}
03}

02t

Objective Value

0.1}

0
05 1 1.5 2 25 3

Iterations 10*

Figure: Typical convergence behavior of subgradient-based methods on training
neural networks

» This is one of the painful observation in training neural networks,
but this is nothing to be upset about

Proof of alternate subgradient method
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Performance of subgradient methods in practice

Objective Value

0.5 1 15 2 25 3
Iterations 10

Figure: Typical convergence behavior of subgradient-based methods on training
neural networks

» This is one of the painful observation in training neural networks,
but this is nothing to be upset about
» “The more you know who you are and what you want, the less you
let things upset you."-Lost in translation
» What do you expect from an algorithm that is just a
— few lines of code, has no line search, uses only subgradient?

Proof of alternate subgradient method 33



The Hidden Convex Optimization Landscape of
Deep Neural Networks

Tolga Ergen
Stanford University




Deep Learning Revolution

ImageNet Classification, top-5 error (%)

30 282
258
25 o
g 20 4
5 8 layers
2 15
@ 117 9layers
Lg 19layers 22 layers
S 10 - .
= 73 67 152 layers!
5 . 35
L ‘ , ‘ -
ILSVRC2010 ILSVRC2011 ILSVRC2012 ILSVRC2013 ILSVRC2014 ILSVRC2014 ILSVRC2015
NEC America Xerox AlexNet Clarifi VGG GoogleNet ResNet



Impact of Deep Learning

ALL SYSTEMS GO

Y. LeCun, Y. Bengio, G. Hinton (2015)
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What are the challenges?

hidden layer 1 hidden layer 2 hidden layer 3
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> extremely high dimensional training problem
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What are the challenges?

hidden layer 1 hidden layer 2 hidden layer 3

» extremely high dimensional training problem
m 152 layer ResNet-152: 60.2 Million parameters (2015)
m GPT'-3 language model: 175 Billion parameters (May 2020)
m BAAI” multi-modal model: 1.75 Trillion parameters (June 2021)
» complex black-box systems based on non-convex optimization
m hard to interpret what the model is actually learning

TOpenAl General Purpose Transformer
’The Beijing Academy of Artificial Intelligence



Interpretability is important

Example: Deep networks for MR image reconstruction (Fast MRI
Challenge, 2020)

Ground Truth
Submission




Adversarial examples

+.007 x

“panda”
57.7% confidence 8.2% confidence 99.3 % confidence

‘nematode’ “gibbon™

> adversarial examples, Szegedy et al., 2014, Goodfellow et al., 2015
> stop sign recognized as speed limit sign, Evtimov et al, 2017



Convex vs Non-convex
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Convex vs Non-convex

Convex , . Non-convex

> Convex: least-squares, logistic regression, SVMs etc.
m are extremely well understood

m the choice of the solver, initialization, learning rate schedule do
not matter

m Interpretable and insightful theorems

» Non-convex: neural networks
m 77



Least Squares

y

W)

min X6 —

» convex optimality condition: X'X3 = X'y

» efficient solvers: conjugate gradient (CG), preconditioned CG, QR,
Cholesky...



Least Squares with L1 Regularization (Lasso)

min X3 — Y13 + A8l

» L1 norm |8 = ZL |Bi| encourages sparsity

Tibshirani (1996), Candes & Tao (2005), Donoho (2006)



Least Squares with Group L1 regularization (Group Lasso)

2
R
. —
min +23 1B
2 =1

R
> XiBi—y
=

> encourages group sparsity in the solution [Bs, ..., B¢, i.e., most
blocks are zero

> convex optimization and convex regularization methods are well
understood

Yuan & Lin (2007)
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Two-layer Neural Networks with ReLU Activation

Model: Notation:

X € R™ : Data matrix
y € R" : Label vector
L(-,-) : Arbitrary convex loss function

B > 0 : Regularization coefficient
W, € R¥™ w, € R™ : Layer weights

ReLU(z)

Input T 0l —°



Two-layer Neural Networks with ReLU Activation

Model: Notation:
Output

X € R™ : Data matrix
y € R" : Label vector
L(-,-) : Arbitrary convex loss function

| — [ | — | | — | ] % | B > 0 : Regularization coefficient

W, € R¥™ w, € R™ : Layer weights

ReLU(z)

Input T 0l —°

Optimization problem:

Pnon—convex ‘= Vr\;”in L(d)(XWW)WZay) + g(HWM% + ||W2H%)

1,W2

where ¢(x) = ReLU(x) = (x), and L(,-) is arbitrary convex loss
function 12



Neural Networks are Convex Regularizers

Non-convex optimization problem:

Pnon—convex = W min £(¢(XW1)W2=V) + §(||Wq||,2: + ||W2||%)

WeRdxm,erRm

Convex optimization problem:

p p
Pconvex = min L <Z D,'X(U,' - V)')aV) + ﬂZ(Hu(”2 + ||ViH2)
=1

uhvlec R
=1

where Dq,...,Dp are fixed diagonal matrices



Neural Networks are Convex Regularizers

Non-convex optimization problem:
Pnon—convex = min £(¢(XW1)W2,V) + é(”WWHIZ: + ”WZ”%)
W, ERIXM w, €RM 2

Convex optimization problem:

p p
Pconvex = un\]/,lgc L <z1: D,'X(U,’ - V)')ay> + ﬂZ(HWHZ + ||Vi||2)
=

i=1
where Dq,...,Dp are fixed diagonal matrices

Pnon—convex = Pconvex and an optimal solution to Ppon—convex €an be
recovered from optimal non-zero {u*,v:}_, as follows

u* vi o
Wi = ———,Wy;" = V/|[Uill2 or Wj; = ——=——,W,i" = —/||vil2.

[CHIE [Iv7ll2

3M. Pilanci, T. Ergen, “Neural Networks are Convex Regularizers..”, ICML 2020



Hyperplane Arrangements (D;)

n=3samplesinR?, d=2X= [x

X3
by
(3.3)
//n [}
< assifie, (2;2) D;
X
(1.0

2 W
3 y= 1|y
0 Y3
0 O 2 2
1 0|,DiX=1(3 3
0 1 10

— (XW1)+ = D Xw;

14



Hyperplane Arrangements (D;)
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Il
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o w
o w

S )
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Hyperplane Arrangements (D;)

x| 2 2 Y
n=3samplesinR?%, d=2X= x| =[3 3|,y= |y
Xg 1 0 y3
“y
(33) 000 0 0
@22 D;=[0 0 0f,DsX=1]0 0
X
< — * > 0O 0 1 1T 0
c\aé"‘\x\e (1,0)
\'\“eﬁ‘
— (XW3)+ = D3Xws
\

14



Hyperplane Arrangements (D;)

X
n=3samplesinR?, d=2X= [x
XT
3
by
33)
(72)e o,
_ X
(10)

2 W
3 y= 1|y
0 Y3
0 0 0 0
0 0|,DsX=10 0
0 0 0 0

— (XW4)+ = DyXw,

14



Example: Convex Program forn =3,d =2

2 2
n=3samplesinR?%, d=2,X= x| = [3 3|,y= |
X} 10 Y3
o ?
min —HD1X(uq — V1) + DoX(uy — v2) + DsX(u3 — v3) — yH
{uv}, 2 2
3
+8 (uilla + vill2)
=1
subject to

DqX[U] V]] > O, (ln — Dj)X[U’] V]] <0
D2X[U2 V2] >0, (In — Dz)X[UQ V2] <0
D3X[U3 V3] > O, (In — D3)X[U3 V3] <0

equivalent to the two-layer ReLU neural network!




Neural Networks as High-dimensional Variable Selectors

Non-convex Convex
Output
Output " e
,rY
” ’ o/c/g\o
1 1 1
—_— [ [e[[] [L[o]a]
—— [lofo Dl [o[<]o]
[o]oo] [o]o]x]
W X X X
tmprt ~- W
Input
.
X
XT
2 d v nxdp
X=| 2| errx :>xz{owx Dpx}eR
ReLU Network

ReLU networks = convex model selection applied to X 16




Training Complexity

Given the data X € R"™<, learning two-layer ReLU neural networks
with m neurons: f(X) = Y- (Xwy) , wy,

> Previous result: @(2™n™) (Arora et al,, ICLR 2018)
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Training Complexity

Given the data X € R"™<, learning two-layer ReLU neural networks
with m neurons: f(X) = Y- (Xwy) , wy,

> Previous result: @(2™n™) (Arora et al,, ICLR 2018)

» Our convex program: | O ((%)r), where r := rank(X)

n : # of samples, d : # of features

m polynomialin n, d, and m for fixed rank r
m exponential in d for full rank data r = d. This can not be improved
unless P = NP even form = 1.
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@ Convolutional neural networks (CNNs)



Convolutional Hyperplane Arrangements

Fully Connected(FC) Arrangements: Let X € R"<% and r = rank(X)

1{D;}| := ‘{sign(XW) ‘we Rd}) <0 ((:))
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Convolutional Hyperplane Arrangements

Fully Connected(FC) Arrangements: Let X € R"<% and r = rank(X)

1{D;}| := ‘{sign(XW) ‘we Rd}’ <0 ((:))

Convolutional Arrangements:Let X € R"*? be partitioned into K
patch matrices as X = [X1 ) SO XK], where X, € R"*P

‘{Df}‘ = ‘{sign(xhw):WERh}‘ <0 ((”;)3 >

h(< r) : filter size, K : # of patches

19



CNNs can be optimized in fully polynomial time

INPUT CONVOLUTION + RELU

Given the data X € R"™<9, learning two-layer convolutional ReLU
neural networks with m filters: f(X) = S, S (Xewy;) , wope

Convex program can be globally optimized with complexity
] ((%K)h), where h < r < min{n, d}*

n : # of data samples, h : filter size, K : # of patches

“4T. Ergen, M. Pilanci “Implicit Convex Regularizers of CNN Architectures ..”, ICLR 2021
20



Numerical Experiments: Two-layer Fully Connected RelLU Net-

work

Training cost of a two-layer ReLU network trained with SGD (10
initialization trials) on a toy dataset (d = 2)

Objective Value

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration

@m=s
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Numerical Experiments: Two-layer Fully Connected RelLU Net-

work

Training cost of a two-layer ReLU network trained with SGD (10
initialization trials) on a toy dataset (d = 2)

—— Trial #1
[ —— Trial #2
Trial #3
: —— Trial #4
—— Trial #5
107 - - 10" Trial #6
2 — Trial #1 g —— Trial #7
2 —— Trial #2 s —— Trial #8
= Trial #3 = aise
[ °
2 —— Trial #4 2 Trial #10
3 ——— Trial #5 3 —— Optimal
£ 02 Trial #6 210
o —— Trial #7 o
—— Trial #8
—— Trial #9
Trial #10
—— Optimal
10 10
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration lteration
@m=s (b) m =50

21



Numerical Experiments: Two-layer Convolutional Network on Cl-

FAR

Binary classification on a subset of the CIFAR dataset

o

Obijective Value

0 200 400 600 800 1000 1200 1400 1600
Time(s)

(a) Objective value

22



Numerical Experiments: Two-layer Convolutional Network on Cl-

FAR

Binary classification on a subset of the CIFAR dataset

0.85
‘00 = Trial #1
Trial #4. 075
Trial #5
X Convex Opt
. .
E 3
g Lo

. g

g 10 é
5 Trial #1
£ 3 08 Trial #2
o W = Trial #3
0.55 o Trial #4
Toatre

05 X Convex Opt
102 045
0 200 400 600 800 1000 1200 1400 1600 [ 200 400 600 800 1000 1200 1400 1600
Time(s) Time(s)
(a) Objective value (b) Test accuracy
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SGD for the Convex Program vs SGD for the Non-convex Problem

10-class classification on the CIFAR-10 dataset (n = 50000, d = 3072)

>
o
s
=
Sos
<<
j=2]
£
£ oa
[
= — sGDu=1le-2
0z —— SGD-u=5e-2
sGDu=1e-3
—— Convex

(@) Training accuracy

23



SGD for the Convex Program vs SGD for the Non-convex Problem

10-class classification on the CIFAR-10 dataset (n = 50000, d = 3072)

060
10
L it 2 T,
055 —,\/w
,~
5" I PGP L LAl Pt L
[5) 1 ~ 2T T
< & 050 h o=t ZFETT
i Pl
3 s s
8 oo 3 [
<< Q 04 : ”'/
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= |73
£ oa 5] i
] = 040y
i
= — sGDu=1le-2 i
0s — sGD-u=5e-2 0ss 41
sGDu=1e-3 i
—— Convex "
T 030 T
0 200 400 600 800 1000 1200 0 200 400 500 200 1000 1200
Time(s) Time(s)

(a) Training accuracy (b) Test accuracy)
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Vector Output Networks: Nuclear Norm Regularization

Non-convex optimization problem with C outputs/classes:

. B
Pnon—convex = quRdXT,I\II\FI]zeRmXC£(¢(XW1)W27Y) + 5(”W1”ﬁ2—' + HW2H/2-')

25



Vector Output Networks: Nuclear Norm Regularization

Non-convex optimization problem with C outputs/classes:

Pron—comex = min LOXW)W, ¥) + 2 (W2 + [Wsl2)
W, ERIXM W, ERM*C 2

Convex optimization problem:

p P
Pconvex = lTel?f L <Z1 D,'XU,‘,Y) + BZ HUI”*
=

i=1

Pnon—convex = Pconvex and an Optimal solution to Pnon—convex €an be
recovered from optimal non-zero {Ur}F_..

>A. Sahiner, T. Ergen, J. Pauly, M. Pilanci, “Vector-output ReLU Neural Network
Problems are Copositive Programs ...", ICLR 2021

25
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ReLU Networks with Batch Normalization (BN)

BN transforms a batch of data to zero mean and standard deviation
one, and has two trainable parameters «, :
(Ig — 2117)x

BN, ,(x) = —<d _d "7
ol = o T

27



ReLU Networks with Batch Normalization (BN)

BN transforms a batch of data to zero mean and standard deviation
one, and has two trainable parameters «, :

lg — 1117)x
d

BN, ,(x) = —<4_d 7
ol = o T

Non-convex optimization problem:

Dron-camec =, min__ L(BN. o (6(XW) e, y) + 2 (Il + [ )

1,W2,7,

27



ReLU Networks with Batch Normalization (BN)

BN transforms a batch of data to zero mean and standard deviation

one, and has two trainable parameters «, :

(Ig — 2117)x

BN, o(X) = ———7
! 1(la = §111)x]2

Non-convex optimization problem:

Pnon—convex = min ﬁ(BN%u(ﬁb(XWO)WZvy) + é(HW1H/2: + ||W2H%)
Wq,Wz,’y,O& 2
Convex optimization problem:®

P p
Pconvex = min L <Z Ui(Wi - Vi)»y> + 6Z(HWI”2 + HViH2)
=1

w;,v;ieC -
=1

where DX = U;E,-V,T is the compact SVD of D;X, i.e,, BatchNorm
whitens local data

5T. Ergen* A. Sahiner* et al, “Demystifying Batch Normalization in ReLU Networks ..”,
ICLR 2022 27



ReLU+BN = Convex+Sparsity+Whitening

Non-convex Convex

Output

~ 940\?

Output

BatchNorm
_--= X
/7 \\ /
| ‘Whitening |
Input Input
XeR” ——=X=[DU ... Dpu| e R
ReLU+BN

ReLU+BN = Sparse convex model applied to whitened data X

28



Deep ReLU Networks with BN

Model: fy,.(X) := AC-IW®, where AV = (BN, (A-Iw0))
+

Theorem

Assume the network is overparameterized s.t. Range(A(t=2)) = R", then optimal
solution in closed-form is as follows

(w2 W) = (ADy, (Il - 5), &)

(ﬁY‘(L—1)* a(L—n*) (=gl My ) Vi€ [c]
b b lly;ll2 valyillz

where C is the number of classes/outputs and e; is the jt ordinary basis vector.




Deep ReLU Networks with BN

Model: fy,.(X) := AC-IW®, where AV = (BN, (A-Iw0))
+

Theorem

Assume the network is overparameterized s.t. Range(A(t=2)) = R", then optimal
solution in closed-form is as follows

(w2 W) = (ADy, (Il - 5), &)

(ﬁY‘(L—1)* a(L—n*) (=gl My ) Vi€ [c]
b b lly;ll2 valyillz

where C is the number of classes/outputs and e; is the jt ordinary basis vector.

This also explains Neural Collapse in
(Papyan et al., 2020)
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Convex Generative Adversarial Networks (GANs)

Training Set Eﬂﬂn Discriminator Recl

l.- Fake

j

Generator Fake image

Wasserstein GAN parameterized with neural networks:

Pnon—convex = n;in max Ex~p, [Do,(X)] — Ez~p,[Do,(Go,(2))],
g d

Theorem (7)

Two layer generator two layer discriminator WGAN problems are
convex-concave games.

’A. Sahiner* T. Ergen* et al, “Hidden Convexity of Wasserstein GANs .., ICLR 2022

31



Two-layer ReLU discriminator/generator WGANs for 1D data

optimal solution can be found in closed form using convex
optimality conditions

A is the weight decay regularization parameter of the discriminator

o real data samples
fake data samples

--
-

-1 142 0 -4 +1

A<1
no mode collapse



Two-layer ReLU discriminator/generator WGANs for 1D data

A is the weight decay regularization parameter of the discriminator

optimal solution can be found in closed form using convex

real data samples
fake data samples

optimality conditions

--

-1+2 0 1-2

A<1
no mode collapse

A>1

mode collapse
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Three-layer ReLU Networks with parallel architecture

Model: Notation:

Output

o O

/ t \ X € R™9 - Data matrix

e, y € R" : Label vector

L(-,-) : Convex loss function

B> 0 : Regularization coefficient

6 : All parameters

[and k : Layer and sub-network indices
W, € R™=1%": Weights

Input

Optimization problem:

N

D IwgelI?

1

K
Pnon—convex = mein L ; ((XW1I’\')+ sze)+ Wi,y | +

K
2
k=1

3
=

34



Convex Program for Three-layer Neural Networks

Non-convex optimization problem:

K K 3
Pnon—convex = mgin L <Z ((XW1l?)+ W2l?)+ W3k, ) Z Z HWlkulzT

k=1 k=1 (=1

The non-convex training problem can be equivalently stated as

N\Q

min_ > [Xw —w) =y + 8 (Il + W)

w,w’ eC

where || - ||2,1 Is d dimensional group norm: ||w||z 4 := Zﬁ; [lw;l]2

s X 0| g . [pp@ p@ (1))
X = [0 Xs]’ % = [D"pPx .. pPpPx ... p{DPx].

8T Ergen, M. Pilanci “Global Optimality Beyond Two Layers: Training Deep ReLU
Networks via Convex Programs”, ICML 2021

°T. Ergen, M. Pilanci “Path Regularization: A Convexity and Sparsity Inducing
Regularization for Parallel ReLU Networks”, arXiv:2110.09548



Deep ReLU Networks (Depth L > 3)

Input Layer | Layer 2 Layer 3 Layer 4

-.“ . ‘é --~
[®](s]
[¢ 9]

[“e @ oHo o L)

arbitrarily deep RelLU neural networks with parallel architecture

Theorem ('°17)

There is a convex program for arbitrarily deep linear and RelU
networks such that Ppon—convex = Pconvex

10T, Ergen, M. Pilanci, “Revealing the Structure of Deep Neural Networks via Convex

Duality”, ICML 2021

Y. Wang, T. Ergen, M. Pilanci, “Parallel Deep Neural Networks Have Zero Duality Gap”,

ICLR 2023 36



Plan for the rest of the talk

How to make neural network training and inference more
energy/memory/data efficient?

» optimal quantization of network activations
> layerwise learning of deep neural network models
> Transfer learning with pretrained models

37



Quantizing Network Activations

discrete valued activation o(+)

» computational efficiency
> intermediate feature vectors are discrete (e.g., 0-1 valued)

> enables efficient storage of activation patterns

38



Threshold Activation Networks

> Threshold activations with a trainable amplitude:

s ifx>0
0 otherwise

os(x) = s1{x > 0} = {

> Model:  f(X) = o5 (...o5, XWD )W yw®
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Threshold Activation Networks

> Threshold activations with a trainable amplitude:

s ifx>0
0 otherwise

os(x) = s1{x > 0} = {

> Model:  f(X) = o5 (...o5, XWD )W yw®

> Non-convex optimization problem:

L
pronconvex =_min 2 IX) =yl +2 3 (IWOIE + I )
i=1

39



Threshold Activation Networks

» Threshold activations with a trainable amplitude:

s ifx>0
os(X) :=s1{x > 0} = -
0 otherwise

> Model:  f(X) = o5 (...o5, XWD )W yw®
> Non-convex optimization problem:

—

Pnonconvex —Wm'" Hf( -yl + Z (||W(i)\|§ + H51||§)

» Convex optimization problem: Enumerate the patterns Dy, ..., Dp as
columns of an n x P 0-1valued matrix D € {0,1}"*". Then we have™

1
Pnonconvex = Pconvex = min = [[Dw — |5 + A|w|;
weRP 2

12T Ergen, et al, “Globally Optimal Training of Neural Networks with Threshold

Activation Functions”, ICLR 2023
39



Standard heuristic: Straight-Through Estimator (STE)

Forward Pass >
w1 Q w2 Q ! Q
= O = Q = Threshold = H £> Q e
Q Q Function Q
10— O O
o O O

Straight-Through Estimator

<:I Backward Pass

40



Numerical Results for Threshold Activation Networks

H
2
i

H
2
h

<

Objective Value
Objective Value

2

Objective Value

2

i H 2 3 4 2 3
Time(s) Time(s) Time(s)

(@) (n,d) = (20,100) (b) (n,d) = (50,50) (¢) (n,d) = (100, 20)

Training comparison of our convex programs with the standard non-convex
training heuristic (Straight-Through Estimator (STE) and SGD). In each case,
our convex training algorithms achieve lower training objective. STE does
not yield optimal quantized networks.

41



Numerical Results for Threshold Activation Networks

Performance comparison on CIFAR-10, MNIST, and UCI Machine
Learning Repository datasets (Accuracy 1, Timel)

Dataset ‘Cunvex-Lasso (Ours)‘ Nonconvex-STE ‘ Nonconvex-ReLU ‘ Nonconvex-LReLU ‘ Nonconvex-CReLU

‘ Accuracy  Time(s) ‘ Accuracy  Time(s) ‘ Accuracy Time(s) ‘ Accuracy Time(s) ‘ Accuracy  Time(s)

CIFAR-10 0.816 8.9 0.81 83.5 0.803 85.8 0.798 92.1 0.808 87.1
MNIST 0.9991 39.4 0.9986 61.3 09984  63.4 0.9985 755 0.9985 649
bank 0.895 7.72 0.892 5.83 0.900 5.96 0.899 8.41 0.897 6.35
chess-krvkp 0.945 534 0.937 6.78 0.934 6.17 0.945 7.44 0.941 6.15
mammographic | 0.818 2.64 0.808 5.40 0.803 6.51 0.801 576 0.817 5.29
oocytes-4d 0.787 223 0.787 5.61 0.756 7.09 0.723 6.22 0.732 579
oocytes-2f 0.799 1.99 0.776 5.24 0.774 6.97 0.775 5.89 0.783 5.46
ozone 0.967 3.65 0.967 630 0.967 6.89 0.967 7.86 0.967 6.20
pima 0.719 167 0.727 5.0 0.730 6.54 0.734 572 0.729 523
spambase 0.919 6.91 0.924 7.41 0.925 6.17 0.921 8.78 0.926 6.61
statlog-german | 0.761 222 0.755 5.84 0.756 6.39 0.753 5.89 0.758 5.48
tic-tac-toe 0.980 1.89 0.954 4.97 0.932 6.63 0.926 5.61 0.951 518
titanic 0.778 035 0.790 5.06 0.784 6.30 0.796 6.24 0784 519
Accuracy/Time  9/13 1/13 2/13 113 2/13 1/13 4/13 0/13 2/13 0/13
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Numerical Results for Threshold Activation Networks
Original images

il BV
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Numerical Results for Threshold Activation Networks
Original images
- A
Eﬂk.k‘lﬂm 2
vy -
i -l g W

Nonconvex training

ZCaal B
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Numerical Results for Threshold Activation Networks
Original images
- > _
ZCLaN: BvEs
..l-. &l ¢ B il |
~Nonconvex training
L R -
TPl Hiis
Convex training

Vi =P v B v RE
i , g 2 o t®
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Quantized (multi-step) Activation Networks

> Threshold activations with a trainable amplitude:

25 if —2<x< -1
-5 if —1<x<0
0 ifo<x<1
s if1<x<?2

» Convex optimization problem: There is a fixed matrix
De{...,—2,-1,0,1,2,...}"*" such that

1
Pnonconvex = Pconvex = min = [[Dw — y||§ + Bllwll
weRP 2

I



Convex Layer-Wise Training of Deep Networks

(i) train a two-layer network using convex optimization
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Convex Layer-Wise Training of Deep Networks

(i) train a two-layer network using convex optimization
(ii) fix the hidden layer to use as feature embedding

(iii) repeat two-layer network training on these features

» low memory consumption
> modular models: networks can keep evolving
» each convex model is trained to global optimality efficiently with

no hyperparameter tuning
45



Numerical results for layer-wise convex learning on CIFAR-10

~ ~ ©
o (5] o
w
\
N\
X
\

CIFAR-10 Test Accuracy
(=)}
w
\
N
N
N

e convex layerwise training

55
1.0 15 20 25 30 35 40 45 50

Stage
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Numerical results for layer-wise convex learning on CIFAR-10

CIFAR-10 Test Accuracy
[=)] ~ ~ [e*]
w o w o
\

N
-
N
N
AY
\
]
\
\

(=]

o
L}

N,

e convex layerwise training

[S]
o

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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Accuracy | Layers

End-to-end CNN 81.6% 6
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Numerical results for layer-wise convex learning on CIFAR-10

CIFAR-10 Test Accuracy
[=)] ~ ~ [e*]
w o w o
\

N
-
N
N
AY
\
]
\
\

(=]

o
L}

N,

e convex layerwise training

[S]
o

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Stage

Accuracy | Layers

End-to-end CNN 81.6% 6
AlexNet 82% 8
ResNet 83% 18

VGG 89% 16
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Transfer Learning: Person Detection on the COCO dataset

Binary classification on the COCO dataset (n = 20k, 256 x 256 images)

0.750 ————
>~0.7251 = NCVX
O
(G 0.700+
| -
>
8 0.675

0.650
<
+ 0.6251 /\_—-/\/—
0
|_ " W/\

0.5751

10-5 104 1073 102
Learning Rate

CVX: Convex CNN
NCVX: Nonconvex CNN
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Transfer Learning: Person Detection on the COCO dataset

Binary classification on the COCO dataset (n = 20k, 256 x 256 images)

0.750 7 * ."_* = % —y6 K= N— cvx
>0.725 ¢ cuxe
(@) — NCVX
e 0.700-4 ¢ nNovxp

O 06751
T 06501 = K=Y K g0 3¢ K= 2% o X

10625 N —
n

lq_) o /V\/\

0.5751 i i I !

107> 10~ 1073 1072
Learning Rate

CVX: Convex CNN
NCVX: Nonconvex CNN
CVX-P: Convex CNN trained on MobileNetV3 features

NCVX-P: Nonconvex CNN trained on MobileNetV3 features 4



Takeaways and Open Problems

» RelU network training is convex in high dimensions
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Takeaways and Open Problems

» RelU network training is convex in high dimensions

m convex optimization theory and solvers can be applied

m don't need heuristics or hyperparameter search, e.g., learning rate
and initialization

> Training complexity is polynomial-time w.rt. the number of
samples n and the feature dimension d

» architecture search = regularizer search (group ¢, nuclear
norm,...)

Future research directions:
> faster algorithms to solve high-dimensional convex programs
» Other NN architectures: Transformers, d|ﬁu5|on models ..

0 @tolgaergen_

stanford.edu/~ergen/

O tolgaergen "



References

stanford.edu/~ergen

e M. Pilanci, T. Ergen, “Neural Networks are Convex Reg...", ICML 2020

e T Ergen, M. Pilanci “Implicit Convex Regularizers of CNN Architectures
... ICLR 2021

® A Sahiner, T. Ergen et al “Vector-output ReLU Neural Network Problems
are Copositive Programs ...", ICLR 2021

e T Ergen* A. Sahiner* et al, “Demystifying Batch Normalization in ReLU
Networks .., ICLR 2022

e A Sahiner* T. Ergen* et al, “Hidden Convexity of Wasserstein GANSs ...",
ICLR 2022

e T Ergen, M. Pilanci, “Global Optimality Beyond Two Layers ..", ICML 2021

e T Ergen, M. Pilanci, “Revealing the Structure of Deep Neural Networks
via Convex Duality”, ICML 2021

e T Ergen, M. Pilanci “ Convex Geometry and Duality of
Over-parameterized Neural Networks”, JMLR

e T Ergen, M. Pilanci, “Path Regularization: A Convexity and Sparsity
Inducing Regularization for Parallel ReLU Networks”, arXiv:2110.09548


stanford.edu/~ergen

15.084/6.7220 Recitation 9: Projected
Stochastic Gradient Descent and its Convergence

“It does not matter how slowly you go as long as you do not
stop.”-Confucius

Shuvomoy Das Gupta
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HW4

» HW4 will be uploaded on Monday, | am still working on the
questions

» It will contain one question from the guest recitation, please watch
the video

» HWS3 will be grade will be uploaded this weekend

HW4 and project



Project

» Hope project going well

» Please contact me if you face any issue

HW4 and project
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Stochastic gradient descent for nonsmooth convex setup

Stochastic gradient descent for nonsmooth convex setup



Problem setup

» We are interested in solving the problem

minimize T
pF = z€R? f< ) (7?)
subject to x € C|
where we have the following assumptions regarding the nature of the
problem.
We assume:

— f:R?Y - (—o0,00] is a closed (epigraph closed), proper
(dom f # ), and subdifferentiable convex function

— (' is a nonempty, closed, convex set, with C' C relint dom f
— (P) has a finite optimal solution

Notation:

» all norms are Euclidean norm

» Il¢ is projection onto the set C, will satisfy
e (x) — el < [z —yll

Stochastic gradient descent for nonsmooth convex setup



Stochastic oracle

We assume that given an iterate xy, the stochastic oracle is capable of
producing a random vector g; with the following properties:

> (unbiased) V>0 E[gx | zx] € 0f(zx), and
> (bounded variance) 3¢>0 Vo0 E [[lgxl* | 2] < G2



Stochastic gradient descent

1. initialization:
pick x¢ € C arbitrarily
2. main iteration:
fork=0,1,2,...,K — 1
(i) pick stepsizes o, > 0 and random g; € R? satisfying
E[gx | zx] € Of (z1) and E [[|g[]* | z1] < G?
(i) compute x 11 = ¢ (2 — argr)
end for
3. return 2

Stochastic gradient descent for nonsmooth convex setup



Convergence analysis: bound E [||z;1 — 2, [|? | 4]

E [[[ar1 — 2] | 2]



Convergence analysis: bound E [||z;, 1 — x,]|* | z4]

E [[[ar1 — 2] | 2]

=E [|He(zr — argr) — Ho(z)|? | 2x] > using zpy1 = e (r — onge)



Convergence analysis: bound E [||z;1 — 2, [|? | 4]
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Convergence analysis: bound E [||z;1 — 2, [|? | 4]

E [lzr1 — 2| | k]
=E [|[Hc(zx — arge) — He(2)||? | 2] > using 241 = Lo (s, — ongr)
< E [[lar — argr — z[* | 2] > using e (z) — He(y)]| < |z -yl

=E [[[(zx — 22) — argil® | =]



Convergence analysis: bound E [||z;, 1 — x,]|* | z4]

E [[[zgr1 — a.l* | zx]

=E [HHC( Ty — akgr) — HC@*)HQ | xk] > using zx 1 = Ho (2 — argr)
E [[|lzr — akgr — a.]|* | 2x] > using |[c(z) — Me(y)l| < [lz —yl|

[ Tl — Ty _akng | xk]

E|

ok — zll® + ok llgell® — 200 (xk — 245 gr) | 2]
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Convergence analysis: bound E [||z;, 1 — x,]|* | z4]

E [[[zg11 — a.* | zx]
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=E [[lzx — 2% | 2x] + 2B [lgxll* | 2] — 200 [(wx — x5 g1} | 4]
> use E[A(X)Y | X] =h(X)E[Y | X]
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Convergence analysis: bound E [||z;, 1 — x,]|* | z4]

E [[[zhsr — 2.* | 2]

= E [z — 2.1 + ofllgrll® — 20 (xn — 45 gr) | z1]
> use linearity of expectation
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Convergence analysis: bound E [||z;, 1 — x,]|* | z4]

E [[[zhsr — 2.* | 2]

= E [z — 2.1 + ofllgrll® — 20 (xn — 45 gr) | z1]
> use linearity of expectation

=E [z — 2./ | 2x] + FE [llgll? | 2] — 200 [(@1 — 245 1) | 22]
> use E[W(X)Y | X] = h(X)E[Y | X]

= llzx — z)® + RE [lgel® | z1] — 200 (zh — 243 E [gi | 7))
> use E [[lgr]l? | 2] < G°

<o — @l? + 02 G — 200 (1, — 45 Egi | 24])



Convergence analysis: bound E [||z, 1 — x,]|* | z4]

Now recall that

fly) > f(@) +(f'(x); y — 2)

Stochastic gradient descent for nonsmooth convex setup
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Convergence analysis: bound E [||z, 1 — x,]|* | z4]

Now recall that

f) = f@) + (f'(2); y — )
P f(@a) = flan) + (f (@) wa - )
& flee) = fler) + (Elgr | xk] Ty — T)

Stochastic gradient descent for nonsmooth convex setup
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Convergence analysis: bound E [||z, 1 — x,]|* | z4]

Now recall that

fy) = f(@) +{f'(2); y — 2)
VTR ) > o) + (f () T — w)
& flae) > floe) + (Elgr | 2] ; o — k)
& f(z) = f(e) — (Elge [ 2x]; 2r — 2)

Stochastic gradient descent for nonsmooth convex setup
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Convergence analysis: bound E [||z, 1 — x,]|* | z4]

Now recall that

fy) = fl) + {f'(@); y — 2)
VTR ) > o) + (f () T — w)
< flry) > flzr) + (Elgr | 2k]; % — zk)
& f(z) = f(e) — (Elge [ 2x]; 2r — 2)
& —(Elgr | 2] op — 24) < f(2h) — for)

So

E [[lzrs1 — 2l | 2] < llze — 2l + afG? + 200 (— (2 — 245 Egi | 21]))
< ok — 20”4+ 0R G + 20k (f(w2) — f(2)

SB[k — 2P [ o] < flow — 2l + 0k G — 200 (f (2x) — f(24))

Stochastic gradient descent for nonsmooth convex setup 11



Using Adam’s law and montonicity of expectation

» Adam’s law says that E[E[Y | X]] = E[Y]
> Montonicity of expectation X <Y = E[X] < E[Y]
» We have
E [[[zksr — 2l? | 2] < ok — 20]® + a3 G? = 20y, (f(ar) — f(24))
> Taking expectation (wrt x) on both sides we get

E [E (o — 2.l | 2x]] < E [llze — 2ul* + R G® = 20 (f(z2) = f(z))]

Stochastic gradient descent for nonsmooth convex setup
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Using Adam’s law and montonicity of expectation

» Adam’s law says that E[E[Y | X]] = E[Y]
> Montonicity of expectation X <Y = E[X] < E[Y]
» We have
E [[[zksr — 2l? | 2] < ok — 20]® + a3 G? = 20y, (f(ar) — f(24))
> Taking expectation (wrt x) on both sides we get

E [E (o — 2.l | 2x]] < E [llze — 2ul* + R G® = 20 (f(z2) = f(z))]
& E [leers —a’] S E[ller - 2.l”] + E [0} G*] — E [2ai (f(2x) — f(22))]
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Using Adam’s law and montonicity of expectation

» Adam’s law says that E[E[Y | X]] = E[Y]
> Montonicity of expectation X <Y = E[X] < E[Y]
» We have
E [[[zksr — 2l? | 2] < ok — 20]® + a3 G? = 20y, (f(ar) — f(24))
> Taking expectation (wrt x) on both sides we get

k]] SE [llze = 2ull* + R G® = 20 (f(zx) — f(z))]
[lex — 2] + E [0 G*] — E [2ak (f(ax) — f(24))]
[z = 2.]*] + akG® = 200 B [f (xr) — f ()]

E [E [[eri — 2. | 2
S E [[lzer1 —2.|’] <E
& B [op — o] <E
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Using Adam’s law and montonicity of expectation

» Lets do a telescoping sum
E (o1 — 2. ?] — B [llzr - @.]®] < ~200B[f (@) - f(2.)] + afG?
E[lzx — 2.))’] = E [or-1 — a.]|”] < —20xE [f(zr-1) = f(z:)] + ak 1 G

E [[em+1 — 2ull”] = B [Jlom — 2.)*] < —20mBE[f(zm) — f(z.)] + a7, G,
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Using Adam’s law and montonicity of expectation

» Lets do a telescoping sum

E i — a.]’] - B [lar - 2.)%] < —200B[f(ax) — f(.)] + a}G?
E [Jer — 2. ?] — E [llex1 —2.]%] < —200B [f(ax1) — f(a.)] + af 1G>

E [[em+1 — 2ull”] = B [Jlom — 2.)*] < —20mBE[f(zm) — f(z.)] + a7, G,

> We get

E [|lzesr — 24 |*]—E [lam — z.|]*] < 22041 f(zs +G22a3

Stochastic gradient descent for nonsmooth convex setup 13
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> Now
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Modifying the telescoping sum

» Recall that ax > 0,b; > 0, we have (mink ak) Zk b < Zk arby
> Also E [mlnl Xz] < mini E [Xz]
> Now

B [larss =2 2] =B [Jom = o.]?] < =2 3 aiB /(@) = f(.)] + G Za

k
& 0<E [lorrs — 2l B [llem —2.]?] -2 Y aiB[f(2) - fla)] + G2 Z o?
k

= 0<E [[[zm —a:?] =2 D aiB[f(2:) — f(@)] +G* D of
i= i=1

3

k k
& 3 @Bl ~ f@) < 5 <E [lem @] +6* 3 “’2>

i=m i=m

. ; L 2 2 . 2
= Z i (ie{gm k}E[f(xi) - f(x*)}) =2 \® [me ol ] e Z o

] \eim,..., h
i=m 1=m
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Modifying the telescoping sum

» Recall that ax > 0,b; > 0, we have (mink ak) Zk b < Zk arby

> Also E [mlnl Xz] < mini E [Xz]
> Now

E [lexss — 2u)?] = B [lm — 2lP] < -2 3 aiB[f(2) - fla)] + G2 Za

i=m

k

& 0<E [lorrs — 2l B [llem —2.]?] -2 Y aiB[f(2) - fla)] + G2 Z o?

i=m

k m
= 0<E [[[zm —a:?] =2 D aiB[f(2:) — f(@)] +G* D of
i=m i=1

k
o Z aE[f(z:) — flzs)] < % <E [lzm — 22 + G > a$>

i=m i=m

- . i E . <1 E 2 G2 z 2
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Modifying the telescoping sum

» Recall that ax > 0,b; > 0, we have (mink ak) Zk b < Zk arby
> Also E [mlnl Xz] < mini E [Xz]
> Now

B [larss =2 2] =B [Jom = o.]?] < =2 3 aiB /(@) = f(.)] + G Za

k
& 0<E [lorrs — 2l B [llem —2.]?] -2 Y aiB[f(2) - fla)] + G2 Z o?
k

= 0<E [[[zm —a:?] =2 D aiB[f(2:) — f(@)] +G* D of
i= i=1

3

k
o Z aE[f(z:) — flzs)] < % <E [lzm — 22 + G > a$>

- . i E . <1 E 2 G2 z 2
> (Za) (ogmin , BUE) —s@) < 5 (Bllen el +67 3 o

. ) E[”LEW—I*” ]+G2Zz maf
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E [”Im —LL'*H ] +G2 Z’L mOl?
QZi:m %




Showing convergence

» We have shown that

E [[@m — z.]?] + G2 XL, o2

IN

B| _min (f) - f)} L e
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Showing convergence

» We have shown that

E [||xm — | ] + G? ZZ ma2

IN

B[ _min {7~ 7}

2 Zi:m «
» In the last inequality, m is arbitrary, so set m <— 0, which leads to:

lzo — 4|2 + G2 Y5 oF
221 0%

0<E [ min _{f(z;) — f(x*)}}

1€{0,...,k}
> if we have Zf:o a? < oo and Zf:o o = 00, then we have

B| _min, £ > fe.)



v

Convergence rate

Additional assumption required:

C'is bounded (besides closed and convex), for all z € C, we have
=] < B

Set a, = \/l?ﬁ
Then we can show that E [f(Zg) — f(x4)] < (% + an) ﬁ

where 7 = ¢ ZZ o Tk

To the best of my knowledge, no proof that establishes a rate on

E[f(zx) = f(2.)]

Stochastic gradient descent for nonsmooth convex setup
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Outline

Minibatch SGD and momentum SGD

Minibatch SGD and momentum SGD
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Minibatch SGD

Problem

P = ( mTC_ingize fl@)=13" fi(z) ) (P)
For B C {1,...,n}, define f5(z;) = \Tél Yien filxe)
Minibatch SGD works as follows

— Pick some By C {1,...,n} sampled uniformly among sets of size

be{l,2,...,n}

— Update Tpt1 = Tk — akf,Bk (Ik)
If we run NNV iterations, then convergence rate in averaged function
value gap is O(1/+/N) for smooth convex f;

No convergence rate for nonsmooth convex function

Minibatch SGD and momentum SGD
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Stochastic momentum method

Problem

P = ( minimize f(z) = 237" | fi(z) ) (P)

z€R?
For most, if not all, deep learning solvers is some form of SGD with
momentum
Stochastic momentum method is as follows
Pick some iy € {1,...,n} sampled uniformly with probability 1/n
Update xp4+1 = xr — agV fi, (2k) + Bk (vk — Tp—1)

If we run NNV iterations, then convergence rate in last iterate function
value gap is O(1/v N) for smooth convex f;
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