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What is this talk about?

this talk is about ADMM and Douglas-Rachford splitting for
nonconvex problems
» the alternating direction method of multipliers (ADMM)
— originally designed to solve convex optimization problem
» Douglas-Rachford splitting algorithm
— ADMM is its special case in a convex setup

» both guaranteed to converge for convex problems



Motivation

nonconvex ADMM (NC-ADMM) has become a popular
heuristic to tackle nonconvex problems

recently, NC-ADMM heuristic has been applied to

[Erseghe, 2014] optimal power flow problem,

[Takapoui et al., 2017] mixed integer quadratic optimization,
[lyer et al., 2014] submodular minimization with nonconvex
constraints ...

[Diamond et al., 2018] Python package NCVX (extension of
CVXPY) implements ADMM heuristic (NC-ADMM)

— often produces lower objective values compared with exact
solvers within a time limit

nonconvex Douglas-Rachford splitting (NC-DRS): analogous
nonconvex heuristic based on Douglas-Rachford splitting

not much has been done to improve the theoretical
understanding of such heuristics



Summary of the results

» NC-DRS

— attacks the original problem directly

— optimal solutions can be characterized via the NC-DRS
operator

— if deviation from a convex setup is bounded = it will converge
or oscillate in a compact connected set

» NC-ADMM
— works on a modified dual problem, not the original nonconvex
problem
— not equivalent to NC-DRS, but there is a relationship between
them

— likely to produce a lower objective value



Problem in consideration

» minimize a convex cost function with nonconvex constraint set

minimize, f(z)

subject to z €C (OPT)

» f is closed, proper, and convex

» C is compact, but not necessarily convex



Reformulation through indicator function

» indicator function of set C:

0, ifzeC
dc(x) ={

oo, ifzé¢C
» Jc¢ is closed and proper, but not necessarily convex
> we can write

( minimize, f(x)

subject to xz€C > = minimize,, f(z) +dc(z)



Proximal operator of [ and projection onto C

» both NC-DRS gnd NC-ADMM have same subroutines: first
prox. s, then Il¢ and finally 3°

» proximal operator of f evaluated at point x with parameter
v >0:

. 1
prox, ; (z) = argmin, (f(y) + 5||y —z[?)

— single-valued, continuous
» projection onto C:

prox., (x) =¢(x) = argmingcc (ly — 1‘”2)

— there can be multiple projections
— one such projection is denoted by II¢(-)



NC-ADMM and NC-DRS:

» NC-ADMM:
Tn+1 = ProxX, s (Yn —2n)
Ynt1 = e (Tpy1+ 2n)
Zn+1 = Zn — Yn+1 + Tnt1
» NC-DRS:

Tpt1 = ProX, (zn)
Yn+1 = HC (an—i—l - Zn)
Znt+1 = Zn + Ynt+1 — Tntl

» both have same subroutines, but different inputs



Pretend C is convex

> f is closed, proper, convex
» pretend C is convex = x,,y, converge to an optimal solution
for any initial condition
» but C is not necessarily convex in our setup
— convergence conditions are messy



Why are convergence conditions messy?

the convergence conditions are messy because:

» subdifferential operator of d¢ is monotone, but not maximally
monotone

> = f[cz is expansive i.e., not nonexpansive
» = the underlying reflection operator is expansive
Little bit of review...



Monotone and maximally monotone operators

» T is monotone if for every (z,u),(y,v) € graT
(r—y|lu—v)y>0

» T is maximally monotone if graT is not properly contained
by any other monotone operator’'s graph

i) Ty(x)
\ \
graTy
graB
I >z
gra A graT) =graAUgraB
monotone, but not maximally monotone maximally monotone
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Subdifferential operator for a nonconvex function

> g: closed, proper, but not necessarily convex

» OJg: subdifferential of g is monotone, but not maximally
monotone

dg(x)={ueR"[(VyeR")g(y) > g(z)+(u|y—x)}

no subgradient at xa




v

v

v
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Why are convergence conditions messy?

our problem: minimize, f(x)+ dc(z)

df: maximally monotone

dd¢: monotone, but not maximally monotone
=Tl¢ is expansive (not nonexpansive)

What is a nonexpansive operator?



T -

What is a nonexpansive operator?

single-valued operator on R"
» T is nonexpansive on R if for every x,y we have

1T () =T < [l -yl

> prox. is nonexpansive

> (2prox7f —In) is nonexpansive
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Operators that are expansive

T is a single-valued operator on R™

» T is expansive if there exist z,y such that

1T () =Tl > [l =yl

» Il; is expansive
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Characterization of minimizers: NC-DRS operator and

its reflection

T : NC-DRS operator

v

T= I:Ic (2prox7f — In) + I, — Prox. .

R: reflection operator of T

v

R=2T-1,

v

NC-DRS in compact form:

Zn+l = Tzn = % (R—l—[n) Zn

v

IIc: expansive = R: expansive = root of all convergence
issues



Characterization of minimizers

» argmin (f +d¢) is the set of minimizers of min., f(z)+ dc(x)

prox. ;(fix T) C argmin (f +d¢)

» underlying assumptions:
1. zer (Of 4+ 9dc) is nonempty
2. fixT is nonempty
3. ﬁx{(ZHc — In) (2prox,yf — In)} is nonempty




Convergence of NC-DRS: setup

> ¢, . expansiveness of R at z,y

R :{IR(SE)—R(y)H—IIw—yIIa if [lz —yl| < | R(x) = R(y)|
0, else

> o = \JeE\JIR(x) — R@y)| + e~y



Convergence of NC-DRS: conditions

» (zn)neN: sequence of vectors generated for some chosen
initial point zg

if the following holds:

. 5\ 2
> there exists a z € fixT', such that > 72 (aﬁz) is bounded

Z
above, and ||zo — z||? is finite
N
— define r:= \/||zo —zI2+3 0, (Ufnz)
— B(z;r): compact ball with center z and radius r

then...




Convergence of NC-DRS

then one of the following will happen:

1. convergence to a point: the sequence (z,),eN converges to
a point z* € B(z;r)

2. cluster points form a continuum: the set of cluster points
of (zn)nen forms a nonempty compact connected set in
B(z;r)

5\2
if situation 1 occurs and lim,,_, (aiz*) =0, then
Ty, = Prox, s (z,—1) converges to an optimal solution



Some comments on convergence

for convergence total deviation of R from being a
nonexpansive operator over the sequence {(z,,2)}, cn IS
bounded

depends on the initial point

in our case C is not necessarily convex

» sanity check: pretend C is convex =

— total deviation of R from being a nonexpansive operator over
the sequence {(zp,2)}, oy is zero

— our convergence proof coincides with known convergence
results for convex setup
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Constructing NC-ADMM

original problem: minimize,cc f(x)
take dual and apply NC-DRS to the dual
resultant algorithm is relaxed NC-ADMM

Tn+1 = Prox,r (Yn — 2n)
Yn+1 = 1_IconvC (Zn + xn—&-l)

Zn+1 = Zn — Yn+1 T Tntl

relaxed NC-ADMM solves minimize,cconve f(2)



Constructing NC-ADMM (continued)

» relaxed NC-ADMM

Tn4+1 = Prox, ¢ (yn - ZTL)
Yn+1 = HconvC (Zn + xn—&—l)

Zn+1 = Zn — Yn+1 + Tnt1

— solves minimize,ecconve f()

» replace Ilconve With IIe to solve minimizegee f(x)
» resultant algorithm is NC-ADMM:

Tn+1 = ProX, s (yn - Zn)
Yn+1 = 1:IC (xn—l—l + Zn)

Zn+1 = Zn — Yn+1 T Tt



Constructing NC-ADMM

| take dual maximize, (—f*v (v) — 65 (v))

minimizezec (f(z)) [

original problem apply NC-DRS

Cn+1 = ProxX, s (tn)
§nt1 = Prox, puv (2Cu+1 — Pn)
wn-%—l =, + §n+1 - <n+1

08" = dconve

prox.;; (z) =2 — Mleonve (v'=)

Tn+1 = ProXs ¢ (yn - Zn)

Tnt+1 = pI'OXWf (yn - Zn) replace HconvC with ﬁc
Yn4+1 = HconvC (Zn + mn+1)

Yn+1 = HC (InJrl + Zn) . R
to solve minimize,cc (f(z)) Zngl = Zn — Ynal + Tnol

Zn+l = Zn — Yn+1 T Tntl

relaxed NC-ADMM: solves
minimizeyeconve (f(2))

NC-ADMM




Pretend C is convex

pretend C is convex
» strong duality holds
> Ilconve = ¢

» Moreau's decomposition can be applied to d¢:
Prox;, + proxs. = I,

then:

» no information loss in constructing NC-ADMM from NC-DRS
» NC-ADMM and NC-DRS are equivalent to each other



However...

S nonconvex

» NC-ADMM and NC-DRS are not equivalent
> reasons for the loss of equivalency:

1. strict duality gap

2. l_[convC 7é HC
3. Moreau's decomposition does not hold

» NC-ADMM in NCVX-CVXPY works on a modified dual, hence
produces a lower objective value

> relationship between minimizers of the original problem and
the NC-ADMM operator breaks down



What if?

> is it possible to establish convergence NC-ADMM ignoring
NC-DRS?
» our convergence analysis is established for

nonempty, compact, but not necessarily convex constraint sets
it is equally applicable to the smaller subclass of problems with
convex constraint sets

in this smaller subclass of convex problems NC-ADMM and
NC-DRS have the same convergence properties
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Summary

» NC-DRS and NC-ADMM are very similar looking, but very
different heuristics

> the theoretical rationale to use NC-DRS could be stronger
than NC-ADMM...
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Limitations

» strong assumptions in minimizer characterization
» step size is 1, does not consider adaptive step sizes

» no numerical experiments in the paper



End of talk

» if you are working on nonconvex problems using ADMM/DRS,
please talk to me!

Thank you!

Questions?
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