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What is this talk about?

this talk is about ADMM and Douglas-Rachford splitting for
nonconvex problems

I the alternating direction method of multipliers (ADMM)
– originally designed to solve convex optimization problem

I Douglas-Rachford splitting algorithm
– ADMM is its special case in a convex setup

I both guaranteed to converge for convex problems
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Motivation

I nonconvex ADMM (NC-ADMM) has become a popular
heuristic to tackle nonconvex problems

I recently, NC-ADMM heuristic has been applied to
[Erseghe, 2014] optimal power flow problem,
[Takapoui et al., 2017] mixed integer quadratic optimization,
[Iyer et al., 2014] submodular minimization with nonconvex
constraints ...

I [Diamond et al., 2018] Python package NCVX (extension of
CVXPY) implements ADMM heuristic (NC-ADMM)

– often produces lower objective values compared with exact
solvers within a time limit

I nonconvex Douglas-Rachford splitting (NC-DRS): analogous
nonconvex heuristic based on Douglas-Rachford splitting

I not much has been done to improve the theoretical
understanding of such heuristics



Summary of the results

I NC-DRS
– attacks the original problem directly
– optimal solutions can be characterized via the NC-DRS

operator
– if deviation from a convex setup is bounded ⇒ it will converge

or oscillate in a compact connected set
I NC-ADMM

– works on a modified dual problem, not the original nonconvex
problem

– not equivalent to NC-DRS, but there is a relationship between
them

– likely to produce a lower objective value
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Problem in consideration

I minimize a convex cost function with nonconvex constraint set

minimizex f (x)
subject to x ∈ C (OPT)

I f is closed, proper, and convex
I C is compact, but not necessarily convex



Reformulation through indicator function

I indicator function of set C:

δC(x) =
{

0, if x ∈ C
∞, if x /∈ C

I δC is closed and proper, but not necessarily convex
I we can write(

minimizex f (x)
subject to x ∈ C

)
= minimizex f(x)+ δC(x)



Proximal operator of f and projection onto C

I both NC-DRS and NC-ADMM have same subroutines: first
proxγf , then Π̃C and finally

∑
I proximal operator of f evaluated at point x with parameter
γ > 0:

proxγf (x) = argminy
(
f(y)+ 1

2γ ‖y−x‖
2)

– single-valued, continuous

I projection onto C:

proxγδC (x) = ΠC(x) = argminy∈C
(
‖y−x‖2

)
– there can be multiple projections
– one such projection is denoted by Π̃C(·)



NC-ADMM and NC-DRS:

I NC-ADMM:
xn+1 = proxγf (yn−zn)
yn+1 = Π̃C (xn+1 +zn)
zn+1 = zn−yn+1 +xn+1

I NC-DRS:
xn+1 = proxγf (zn)
yn+1 = Π̃C (2xn+1−zn)
zn+1 = zn+yn+1−xn+1

I both have same subroutines, but different inputs
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Pretend C is convex

I f is closed, proper, convex
I pretend C is convex ⇒ xn,yn converge to an optimal solution

for any initial condition
I but C is not necessarily convex in our setup

– convergence conditions are messy
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Why are convergence conditions messy?

the convergence conditions are messy because:
I subdifferential operator of δC is monotone, but not maximally

monotone
I ⇒ Π̃C : is expansive i.e., not nonexpansive
I ⇒ the underlying reflection operator is expansive

Little bit of review...



Monotone and maximally monotone operators

I T is monotone if for every (x,u),(y,v) ∈ graT
〈x−y | u−v〉 ≥ 0

I T is maximally monotone if graT is not properly contained
by any other monotone operator’s graph

monotone, but not maximally monotone maximally monotone
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Subdifferential operator for a nonconvex function

I g: closed, proper, but not necessarily convex
I ∂g: subdifferential of g is monotone, but not maximally

monotone

∂g (x) = {u ∈Rn | (∀y ∈Rn) g (y)≥ g (x)+ 〈u | y−x〉}

no subgradient at 



Why are convergence conditions messy?

I our problem: minimizex f(x)+ δC(x)
I ∂f : maximally monotone
I ∂δC : monotone, but not maximally monotone

⇒Π̃C is expansive (not nonexpansive)
I What is a nonexpansive operator?



What is a nonexpansive operator?

T : single-valued operator on Rn

I T is nonexpansive on Rn if for every x,y we have
‖T (x)−T (y)‖ ≤ ‖x−y‖

I proxγf is nonexpansive
I
(
2proxγf − In

)
is nonexpansive 14



Operators that are expansive

T is a single-valued operator on Rn

I T is expansive if there exist x,y such that

‖T (x)−T (y)‖> ‖x−y‖

I Π̃C is expansive
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Characterization of minimizers: NC-DRS operator and
its reflection

I T̃ : NC-DRS operator

T̃ = Π̃C
(
2proxγf − In

)
+ In−proxγf .

I R̃: reflection operator of T̃

R̃= 2T̃ − In

I NC-DRS in compact form:

zn+1 = T̃ zn = 1
2
(
R̃+ In

)
zn

I Π̃C : expansive ⇒ R̃: expansive ⇒ root of all convergence
issues
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Characterization of minimizers

I argmin(f + δC) is the set of minimizers of min.x f(x)+ δC(x)

proxγf
(
fix T̃

)
⊆ argmin(f + δC)

I underlying assumptions:
1. zer

(
∂f +∂δC

)
is nonempty

2. fix T̃ is nonempty
3. fix

{(
2ΠC− In

)(
2proxγf − In

)}
is nonempty



Convergence of NC-DRS: setup

I εR̃xy : expansiveness of R̃ at x,y

εR̃xy =
{
‖R̃(x)− R̃(y)‖−‖x−y‖, if ‖x−y‖< ‖R̃(x)− R̃(y)‖
0, else

I σR̃xy =
√
εR̃xy

√
‖R̃(x)− R̃(y)‖+‖x−y‖



Convergence of NC-DRS: conditions

I (zn)n∈N: sequence of vectors generated for some chosen
initial point z0

if the following holds:
I there exists a z ∈ fix T̃ , such that

∑∞
n=0

(
σR̃znz

)2
is bounded

above, and ‖z0−z‖2 is finite

– define r :=
√
‖z0−z‖2 +

∑∞
n=0

(
σR̃znz

)2

– B(z;r): compact ball with center z and radius r
then...



Convergence of NC-DRS

then one of the following will happen:
1. convergence to a point: the sequence (zn)n∈N converges to

a point z? ∈B(z;r)
2. cluster points form a continuum: the set of cluster points

of (zn)n∈N forms a nonempty compact connected set in
B(z;r)

if situation 1 occurs and limn→∞

(
σR̃znz?

)2
= 0, then

xn = proxγf (zn−1) converges to an optimal solution



Some comments on convergence

I for convergence total deviation of R̃ from being a
nonexpansive operator over the sequence {(zn,z)}n∈N is
bounded

I depends on the initial point
I in our case C is not necessarily convex
I sanity check: pretend C is convex ⇒

– total deviation of R̃ from being a nonexpansive operator over
the sequence {(zn,z)}n∈N is zero

– our convergence proof coincides with known convergence
results for convex setup



Constructing NC-ADMM

I original problem: minimizex∈C f(x)
I take dual and apply NC-DRS to the dual
I resultant algorithm is relaxed NC-ADMM

xn+1 = proxγf (yn−zn)
yn+1 = ΠconvC (zn+xn+1)
zn+1 = zn−yn+1 +xn+1

I relaxed NC-ADMM solves minimizex∈convC f(x)



Constructing NC-ADMM (continued)

I relaxed NC-ADMM

xn+1 = proxγf (yn−zn)
yn+1 = ΠconvC (zn+xn+1)
zn+1 = zn−yn+1 +xn+1

– solves minimizex∈convC f(x)

I replace ΠconvC with Π̃C to solve minimizex∈C f(x)
I resultant algorithm is NC-ADMM:

xn+1 = proxγf (yn−zn)
yn+1 = Π̃C (xn+1 +zn)
zn+1 = zn−yn+1 +xn+1



Constructing NC-ADMM



Pretend C is convex

pretend C is convex
I strong duality holds
I ΠconvC = Π̃C
I Moreau’s decomposition can be applied to δC :

proxδC +proxδ?
C

= In

then:
I no information loss in constructing NC-ADMM from NC-DRS
I NC-ADMM and NC-DRS are equivalent to each other



However...

C is nonconvex
I NC-ADMM and NC-DRS are not equivalent
I reasons for the loss of equivalency:

1. strict duality gap
2. ΠconvC 6= Π̃C
3. Moreau’s decomposition does not hold

I NC-ADMM in NCVX-CVXPY works on a modified dual, hence
produces a lower objective value

I relationship between minimizers of the original problem and
the NC-ADMM operator breaks down



What if?

I is it possible to establish convergence NC-ADMM ignoring
NC-DRS?

I our convergence analysis is established for
– nonempty, compact, but not necessarily convex constraint sets
– it is equally applicable to the smaller subclass of problems with

convex constraint sets
– in this smaller subclass of convex problems NC-ADMM and

NC-DRS have the same convergence properties
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Summary

I NC-DRS and NC-ADMM are very similar looking, but very
different heuristics

I the theoretical rationale to use NC-DRS could be stronger
than NC-ADMM...
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Limitations

I strong assumptions in minimizer characterization
I step size is 1, does not consider adaptive step sizes
I no numerical experiments in the paper



End of talk

I if you are working on nonconvex problems using ADMM/DRS,
please talk to me!

Thank you!

Questions?
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