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This thesis presents two novel optimization models to calculate energy-efficient railway

timetables in a railway network. The first optimization model is a mixed integer pro-

gramming one, which saves energy by maximizing the total overlapping time between

the braking and accelerating phases of suitable train pairs. However, it suffers from some

limitations associated with NP-hard computational complexity and modeling of energy

saving strategy. To overcome the limitations of the first model, we propose a second

optimization model consisting of two stages. The first stage of this model minimizes

the total energy consumed by all trains and the second stage maximizes the transfer of

regenerative braking energy between suitable train pairs. Both of these stages are solv-

able in polynomial time, compared to other existing models, which are NP-hard. The

two-stage model has proven to be very effective in practice and has been incorporated

into an industrial railway timetable compiler.
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Chapter 1

Introduction

In recent years, much emphasis is being placed on efficient use of energy in transportation
systems. The biggest reasons behind it are the depletion of conventional sources of energy
and the fluctuation in production of the renewable sources of energy. The railway system
is an integral part of transportation systems in most countries. Among the multiple levels
of railway planning process, timetabling is very important. A timetable not only allows
the passengers to plan ahead for their trips, it also enables the railway management to
satisfy the operational feasibility of the railway network. This thesis is focused on the
design and investigation of optimization models and solution methodologies to construct
energy-efficient railway timetables.

This introductory chapter is organized as follows. At first we discuss the motivation
behind calculating energy-efficient railway timetables in Section 1.1. In the next section,
we examine the relevant literature in calculating such timetables. In Section 1.3, we
discuss the aim and contribution of this thesis and Section 1.4 presents its organization.

1.1 Motivation

Among all of the public transport modes, railway is often preferred by passengers for
providing higher capacity and safety [2]. So, the performance of public transportation
depends largely on the performance of the railway system. Reliable performance of a
railway network is closely related to the quality of the railway timetable used by the
railway management. Formally, a railway timetable is a data structure that contains
the arrival and departure time of every train to and from all the platforms it visits over
a fixed time period. An energy-efficient timetable designs these arrival and departure
times of the trains to reduce the energy consumption and increase the energy saving in
the railway network. Before presenting the motivations behind calculating an energy-

1



Chapter 1. Introduction 2

efficient timetable, we briefly discuss how a train consumes and produces energy during
a trip.

In most railway networks, trains use electricity as their primary source of energy [44]
and many of them are equipped with regenerative braking technology [39]. When a train
makes a trip from an origin platform to a destination platform, its optimal speed profile
consists of four phases: 1) accelerating, 2) speed holding, 3) coasting and 4) braking
[20], as shown in Figure 1.1. in a qualitative manner. Most of the energy required by
the train is consumed during the accelerating phase. During the speed holding phase
the energy consumption is negligible compared to accelerating phase, and during the
coasting phase there is no need for energy. When the train brakes, it produces energy
by using a regenerative braking mechanism. This energy is called regenerative braking
energy. Naturally, reducing the energy consumption of accelerating trains and/or proper
utilization of regenerative energy of braking trains can increase energy-efficiency of the
railway network by a significant amount.

A feasible strategy to utilize the regenerative braking energy of a train, that can
be implemented with the current technology [10], is to synchronize its braking phase
with the accelerating phase of another nearby train operating under the same electrical
substation (see Section 4.2 for details). A positive overlapping time that arises from such
a synchronization process enables transfer of the regenerative braking energy of the first
train to the second one via the overhead contact line or a third rail [10], and can save
the electrical energy that would be lost otherwise.

The motivations behind designing energy-efficient timetables are as follows. First,
an energy-efficient railway timetable can reduce the energy costs associated with railway
operation. Second, though a lot of emphasis on use of energy from renewable resources
is being put in recent years, non-renewable energy sources such as coal still provide
the significant portion. For example, Canada, in spite of being a world leader in the
production and use of energy from renewable resources, can only manage a mere 18.9%
of the total energy supply from renewable sources [1, page 121]. The non-renewable
sources are the primary driving force behind the emission of green house gasses. So,
improved energy efficiency of railway timetables can reduce the emissions of green house
gasses. Finally, the railway management can increase the energy-efficiency of the railway
network just by enforcing an energy-efficient timetable without requiring any change in
the infrastructure.
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Figure 1.1: Optimal speed profile of a train
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1.2 Literature review

The general timetabling problem in a railway network has been studied extensively over
the past three decades [17]. However, very few results exist that can calculate energy-
efficient timetables. Now we discuss the related research. We classify the related work as
follows. The first two papers are mixed integer programming model, the next three are
models based on meta-heuristics and the last one is an analytical study.

A Mixed Integer Programming (MIP) model, applicable only to single train-lines,
is proposed by Peña-Alcaraz et al. [37] to maximize the total duration of all possible
synchronization processes between all possible train pairs. The model is then applied
successfully to line three of the Madrid underground system. However, the model can
have some drawbacks. First, considering all train pairs in the objective will result in a
computationally intractable problem even for a moderate sized railway network. Second,
for a train pair in which the associated trains are far apart from each other, most, if not
all, of the regenerative energy will be lost due to the transmission loss of the overhead
contact line. Finally, the model assumes that the durations of braking and accelerating
phases stay the same with varying trip times, which is not the case in reality.

The work in [11] proposes a more tractable MIP model, applicable to any railway
network, by considering only train pairs suitable for regenerative energy transfer. The
optimization model is applied numerically to the Dockland Light Railway and shows a
significant increase in the total duration of the synchronization process. Although such
increase, in principle, may increase the total savings in regenerative energy, the actual
energy saving is not directly addressed. Similar to [37], this model too, assumes that
even if the trip time changes, the duration of the associated braking and accelerating
stay the same.

Other relevant works implement meta-heuristics. The work in [27] implements genetic
algorithm to calculate timetables that maximize the utilization of regenerative energy
while minimizing the tractive energy of the trains. Numerical studies for the model
is implemented to Beijing Metro Yizhuang Line of China showing notable increase in
energy efficiency. The work in [46] presents a cooperative integer programming model to
utilize the use of regenerative energy of trains and proposes genetic algorithm to solve it.
Similar to [27], this numerical studies have been performed to Beijing Metro Yizhuang
Line of China, though the improvement is stated in the increase in overlapping time only.
The work in [26] presents a nonlinear integer programming model which is solved using
simulated annealing. The numerical experiments have been conducted for the island line
of the mass transit system in Hong Kong.
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An insightful analytical study of a periodic railway schedule appears in [28]. The
model uses the KKT conditions to calculate and analyze the properties of an energy-
efficient timetable. The resultant analytical model is then applied to Beijing Metro
Yizhuang Line of China numerically, which shows that the model can reduce the net
energy consumption considerably.

1.3 Contribution

The aim of this thesis is to design and investigate optimization models and solution
methods to construct energy-efficient railway timetables. The main research questions
addressed and studied in this thesis are the following:

• How can mathematical optimization models be used to calculate energy-efficient
railway timetables?

• What are the constraints that need to be addressed to design a functional railway
timetable?

• What are the criteria of an energy efficient timetable and how can they be modeled
in a computationally tractable manner?

• How can the energy-efficient timetables arising from the optimization models be
computed in a reasonable amount of time?

To that end, we propose two novel optimization models to calculate energy-efficient
railway timetables in railway networks in this thesis.

The first optimization model utilizes the regenerative braking energy of trains in a
railway network. This optimization model is a robust mixed integer programming one
(see Section 2.2.3 for details). It calculates a railway timetable which maximizes the to-
tal overlapping time between the braking and accelerating phases of suitable train pairs
to facilitate the transfer of regenerative energy to accelerating trains. We prove that all
possible cases arising from possible overlapping between a suitable train pair are modeled
accurately by our model via hypograph approach and interval algebra. We apply our op-
timization model to different instances of two railway networks for time horizon spanning
six hours. Compared to the original timetables, the overlapping time increases signifi-
cantly in the optimal timetables. In the first railway network we have access to relevant
energy information to calculate the relative reduction in effective energy consumption
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and we find that there is significant increase in utilization of regenerative energy for ev-
ery instance compared to the existing timetables. However, the first model suffers from
some limitations associated with computational complexity and energy saving strategy.

To overcome the limitations of the first model, we propose a second optimization
model. It is a novel two-stage linear optimization model. This too calculates energy-
efficient railway timetables, but in two stages. The first stage of the optimization model
minimizes the total energy consumed by all trains subject to the constraints present
in the railway network. The problem can be formulated as a linear program, with the
optimal value attained by an integral vector. The second stage of the optimization
model uses the optimal trip time from the first optimization model and maximizes the
transfer of regenerative braking energy between suitable train pairs. Both the stages
of our optimization model are linear programs, whereas the optimization models in the
first model and in the related works are NP-hard. The second model has proven to be
very effective in calculating energy-efficient timetables in practice. Code based on the
model has been incorporated into the railway timetable compiler (Thales Timetable

Compiler) of Thales Inc, which has the largest installed base of communication-based
train control systems worldwide. Thales Timetable Compiler is used by many railway
management systems worldwide including: the Canada Line and Skytrain in Vancouver,
Canada, Docklands Light Railway in London, UK, the West Rail Line and Ma On Shan
Line in Hong Kong, China, the Red Line and Green Line in Dubai, United Arab Emirates,
the Kelana Jaya Line in Kuala Lumpur, Malaysia, and the East-West Line in Singapore.

1.4 Organization

This thesis is organized as follows. Chapter 2 presents the relevant background on railway
network and mathematical optimization. In Chapter 3 we discuss the constraints required
to calculate a feasible railway timetable. In Chapter 4 we present the first mathematical
optimization model to calculate energy-efficient railway timetable. In the next chapter,
we apply our optimization model to different instances of two railway networks for time
horizon spanning six hours and discuss the results. Chapter 6 presents the two-stage
linear optimization model. In Chapter 7 we apply our model to different instances of an
existing railway network spanning a full working day and describe the results. Chapter
8 presents the conclusion and future research direction.



Chapter 2

Background on mathematical
optimization

In this chapter we introduce concepts associated with mathematical optimization relevant
to this thesis. Section 2.2 describes the structure of an optimization problem and then
discusses different classes of optimization problems. In Section 2.3 we discuss some impor-
tant concepts in mathematical optimization that we have used in this thesis. Section 2.4
is about approximating area under a curve, for which we do not have any mathematical
description available. In Section 2.5 we discuss the tractability of optimization problems
and the importance of a constructing a tractable optimization model in practice.

2.1 Mathematical notation

Every set described in this thesis is strictly ordered and finite unless otherwise specified.
The set-cardinality (number of elements of the set) and the ith element of such a set
C is denoted by |C| and C(i), respectively. The set of real numbers and integers are
expressed by R and Z, respectively; subscripts + and ++ attached with either set de-
note non-negativity and positivity of the elements respectively. A column vector with
all components one is denoted by 1. The symbol � stands for componentwise inequality
between two vectors. The symbols ∧ and ∨ stand for conjunction and disjunction, re-
spectively. The number of nonzero components of a vector x is called cardinality of that
vector and is denoted by card(x). Note that, cardinality of a vector is different from
set-cardinality. The ith unit vector ei is the vector with all components zero except for

7
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the ith component which is one, i.e.,

ei = (0, . . . , 1︸︷︷︸
ith

position

, . . . , 0) ∈ Rn.

The epigraph of a function f : C → R (where C is any set) denoted by epi f is the set
of input-output pairs that f can achieve along with anything above, i.e.,

epi f = {(x, t) ∈ C ×R | x ∈ C, t ≥ f(x)}.

Similarly, the hypograph of a function f : C → R (where C is any set) denoted by
hypo f is the set of input-output pairs that f can achieve along with anything below,
i.e.,

hypo f = {(x, t) ∈ C ×R | x ∈ C, t ≤ f(x)}.

The domain of a function f : Rn → R is denoted by dom f and is defined by

dom f = {x ∈ Rn | f(x) < +∞}.

2.2 Optimization problems

A mathematical optimization problem consists of a set of constraints and an objective to
be optimized over a decision variable. The set of constraints represents the characteristics
of a system (abstract or real) we are interested to study. The objective corresponds
to a quantity or quantities associated with the system which we want to maximize or
minimize. The decision variable, which is often a vector comprising of many components,
is the unknown to be calculated. Our goal is to find an optimal decision variable which
maximizes (minimizes) the objective.

A mathematical optimization problem has the following form

p∗ =


minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.

 (2.1)

Here the vector x = (x1, . . . , xn) is the decision variable of the problem. The function
f0 : Rn → R is the objective function. The inequalities fi(x) ≤ 0 are called the inequality
constraints and the equalities hi(x) = 0 are called the equality constraints. The set of
constraints comprises of both the equality constraints and inequality constraints. The



Chapter 2. Background on mathematical optimization 9

functions fi : Rn → R and hi : Rn → R are called the inequality constraint functions and
the equality constraint functions, respectively. Any y ∈ Rn that obeys all the constraints
is called a feasible solution to the optimization problem. The optimal value of the problem
is denoted by p∗. Our goal is to find an x∗ that minimizes f0 among all feasible solutions,
such an x∗ is called a globally optimal solution (or just optimal solution) to (2.1). So an
optimization problem, the problem involves finding an optimal solution. An algorithm
which can find an optimal solution reliably is called an optimization algorithm. There
can be more than one optimal solutions to an optimization problem. Depending on the
structure of the functions f0, f1, . . . , fm, h1, . . . , hp we have different types of optimization
problems, e.g., linear optimization problem, mixed integer optimization problem, convex
optimization problem etc. For the purpose of this thesis, it suffices to confine our attention
to convex, linear and mixed integer optimization problems.

2.2.1 Convex optimization problems

First we need the following definitions.

Definition 2.1. (Convex set and convex hull) A set C is convex, if the line segment
between any two points in C lies in C, i.e., for any x1, x2 ∈ C and any λ ∈ [0, 1] we
have λx1 + (1− λ)x2 ∈ C. The convex hull of any set C, denoted by conv C, is the set
containing all convex combinations of points in C. Consequently, if C is nonconvex, then
its best convex outer approximation is conv C, as it is the smallest convex set containing
C.

Definition 2.2. (Convex function) A function f : Rn → R is convex, if its domain is a
convex set and for all x, y ∈ dom f , and λ ∈ [0, 1] we have

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Now, in problem (2.1) if the inequality constraint functions f0, f1, . . . , fm are convex,
and the equality constraint functions h1, . . . , hp are affine, i.e., hi(x) = aTi x− bi for any
i = 1, . . . ,m, then the resultant optimization problem is called a convex optimization
problem. Surprisingly, a lot of problems can be solved via convex optimization, though
it can be difficult to recognize. Reliable and efficient algorithms exist to solve convex
optimization problems [8].
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2.2.2 Linear optimization (LP) problems

A linear programming problem is a special type of convex optimization problem. It
arises a lot in practical problems. Linear programming problem has three forms: generic,
general and standard form.

Generic linear optimization problems

In a generic linear optimization problem, we have a cost vector c ∈ Rn, and our goal is to
minimize a linear cost function cTx =

∑n
i=1 cixi subject to a set of linear and inequality

constraints. The decision variable is x ∈ Rn. Let, M≤,M≥ and M= denote three finite
index sets. For every i belonging to any one these sets we have a vector ai ∈ Rn and
a scalar bi to construct the constraint. Let N≥ and N≤ be the subsets of {1, . . . , n} to
denote which variables xj are constrained to be nonnegative and nonpositive, respectively.
Then the generic linear optimization problem can be described as follows.

minimize cTx

subject to aTi x ≥ bi, i ∈M≥,

aTi x ≤ bi, i ∈M≤,

aTi x = bi, i ∈M=,

xj ≥ 0, j ∈ N≥,

xj ≤ 0, j ∈ N≤.

(2.2)

General form linear optimization problems

We can convert the problem (2.2) into a more compact form, which is known as general
form linear optimization problem. Any equality constraint aTi x = bi can be written as
two inequality constraints: aTi x ≥ bi and aTi x ≤ bi. Any inequality constraint aTi x ≤ bi

can be written as (−ai)Tx ≥ −bi. Any constraint of the form xj ≤ 0 and xj ≥ 0 can be
written as (−ej)Tx ≥ 0 and eTj x ≥ 0. So, the constraint set in any linear optimization
problem can be written exclusively in terms of constraints of the form aTi x ≥ bi. If we
have m number of such constraints in total, then the constraints aTi x ≥ bi, i = 1, . . . ,m

can be written compactly as Ax � b, where b = (b1, . . . , bm) ∈ Rm and

A =


aT1
...
aTm

 ∈ Rm×n,
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and the symbol � stands for componentwise inequality. So, a general form linear opti-
mization problem can be written as:

minimize cTx

subject to Ax � b.
(2.3)

From an algorithmic point of view, the general form linear optimization problem is
not very convenient to work with.

Standard form linear optimization problems

There is another representation of linear optimization problem, which is pivotal in the
development of simplex algorithm, known as standard form problem. Any optimization
model, when solved by simplex algorithm, is converted to the standard form first by the
solver [6, Chapter 3]. It has the following form:

minimize cTx

subject to Ax = b,

x � 0.

(2.4)

Any general form linear optimization problem can be brought into a standard form
linear optimization problem as follows.

• We eliminate the unrestricted variables. We use the fact that any real number can
be written as the difference of two nonnegative numbers. Any unrestricted variable
xj, which is allowed to have nonnegative or nonpositive values, can be replaced by
x+
j − x−j , where x+

j and x−j are newly introduced nonnegative decision variables. A
nonpositive variable xi ≤ 0 is essentially (−xi) ≥ 0.

• We eliminate the inequality constraints of the form aTi x ≤ bi (aTi x ≥ bi can be
written as (−ai)Tx ≤ (−bi)), where x has already been made nonnegative using
step 1. We introduce a nonnegative slack variable si to write the constraint as
aTi x+ si = bi.

Converting a standard form linear optimization problem into a general form one is
straightforward. problem (2.4) is essentially equivalent to problem (2.2), with M≥ =

∅,M≤ = ∅, M= = {1, . . . ,m}, N≥ = {1, . . . , n} and N≤ = ∅.
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2.2.3 Mixed integer optimization (MIP) problems

A surprisingly large class of practical problem can be represented by MIP problems. A
MIP problem (in standard form) has the following form:

minimize cTx+ dTy

subject to Ax+ Fy = b,

x � 0, y � 0.

(2.5)

where c ∈ Rn, d ∈ Rd, A ∈ Rm×n, F ∈ Rm×d and b ∈ Rm, and the decision variables
are x ∈ Zn and y ∈ Rn. Problem (2.5) has both discrete and continuous variables.
Computationally MIP problems involve many times as much calculations to solve com-
pared to similar sized convex optimization problems, they belong to a class of NP-hard
problem (see Section 2.5).

2.3 Some important concepts of mathematical opti-

mization

In this section we discuss several independent but important concepts associated with
mathematical optimization that have been instrumental the development of this thesis.

2.3.1 Modeling disjunctions in optimization problems

Modeling many systems requires disjunctive constraints. For example, consider schedul-
ing of jobs on a machine, where one of them has to be scheduled before the other. This
represents a disjunctive scenario. In such applications, the feasible solutions lie in the
union of two or more polyhedra.

Assume we have the disjunctive following constraints

h1(x) ≥ 0,∨

h2(x) ≥ 0,∨
...

hn(x) ≥ 0.

Here a feasible x satisfies at least one of the constraints, but not necessarily both. To
model such constraints, we can introduce n new binary decision variables λ1, . . . , λn ∈



Chapter 2. Background on mathematical optimization 13

{0, 1}, and n positive numbers M1, . . . ,Mn, and rewrite them as follows:

h1(x) +M1(1− λ1) ≥ 0,

h2(x) +M2(1− λ2) ≥ 0,

...

hn(x) +Mn(1− λn) ≥ 0,
n∑

i=1

λi ≥ 1,

λi ∈ {0, 1}, i = 1, . . . , n.

The numbers Mi should be large enough such that when λi = 0, the ith constraint
becomes inactive.

2.3.2 Convex envelope and its importance in optimization prob-

lems

When the feasible set of an optimization problem is convex, but the objective function
f0 is not, the problem is nonconvex, and solving it can be a computationally challenging
task. An appealing idea in such a case is to replace f0 with some convex underestimator
on the constraint set. Naturally finding the best convex underestimator of the function
is of interest in this regard. The best convex approximation of a nonconvex function
f : C → R (where C is any set) from below is given by its convex envelope env f on C.
The function env f is the largest convex function that is an under estimator of f on C,
i.e.,

env f = sup{f̃ : C → R | f̃ is convex and f̃ ≤ f},

where sup stands for the supremum, i.e., the least upper bound of the set. The definition
implies, epi env f = conv epi f .

Finding convex envelope of an arbitrary function is a hard problem in general. How-
ever, some important special cases are known, e.g.,

• Monomial over unit hypercube. Consider the function f = x1x2 · · · xn, known as
monomial, and C = [0, 1]n, also known as the unit hypercube. Then

env f = max

(
0, 1− n+

n∑
i=1

xi

)
.
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• Cardinality function over l∞ ball. Consider the cardinality function card(x) over
the set

C =

{
x ∈ Rn | ‖x‖∞ = max

i∈{1,...,n}
{|xi|} ≤ R

}
,

known as l∞ ball. Then,

env card(x) =
1

R
‖x‖1.

2.3.3 Least-squares problems

Consider the linear systemAx = b, A ∈ Rm×n is a skinny and full column rank matrix
(m > n), b ∈ Rm and x ∈ Rn is our unknown. This type of system is called overde-
termined set of linear equations, as there are more equations than unknowns. In such a
system, there may not exist a feasible solution x satisfying Ax = b, and it makes sense
to find an approximate solutions which makes the residual vector r = Ax− b as small as
possible. One measure of the size of a vector is its Euclidean norm. Thus our goal is to
find an x∗ such that it minimizes ‖r‖2. So, the problem in consideration is

minimize ‖r‖ = ‖Ax− b‖2 ,

with x being the decision variable. As the function y2 is strictly monotonically increas-
ing for nonnegative y, the problem above is equivalent to minimizing the square of the
Eucledian norm as follows.

minimize ‖r‖2
2 = ‖Ax− b‖2

2 (2.6)

with x being the decision variable. Problem (2.6) is an unconstrained convex optimization
problem that can be solved as follows. First note that, ‖r‖2

2 = xTATAx− 2bTAx + bT b.
Now we set the gradient of ‖r‖2

2 with respect to x equal to zero and find the least-squares
solution denoted by x∗.

∇x‖r‖2
2 = 2ATAx∗ − 2AT b = 0

⇔ATAx∗ = AT b

⇔x∗ = (ATA)−1AT b.

Note that ATA is invertible as A is full column rank.
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2.3.4 Locally optimal vs. globally optimal points

A point x∗local is locally optimal for problem (2.1) if there exists a number R > 0 such
that the x∗local is optimal for the problem

p∗local =


minimizex f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

‖x− x∗local‖2
2 ≤ R2

 .

So a locally optimal point minimizes the objective but only for nearby points on the
feasible set. The value of the objective function at a locally optimal point is not neces-
sarily same as the globally optimal value. Often a locally optimal point is of no practical
interest to the user. In a general optimization problem finding a globally optimal point
can be a challenge, as most algorithms tend to be trapped at a locally optimal point. In
this regard, the class of convex optimization problems is different, as a locally optimal
point is always globally optimal in a convex optimization problem.

2.3.5 Robust optimization models

Often we need to account for the presence of uncertainty in the data describing an opti-
mization model. In such a case, we want to obtain a solution that is robust against this
uncertainty. A robust mixed integer optimization model is a deterministic model such that
i) it takes into account the presence of uncertainty in the data describing the optimization
problem, ii) obtains solutions that are proven to be robust against such uncertainty, and
iii) some of the decision variables of the model are integer valued. A robust formulation
is the formal process which models the original problem with uncertainty into a robust
one.

Consider a modified version of the generic mixed integer programming model (2.5) as
follows:

minimize cTx+ dTy

subject to
(
∀ai ∈ U (i)

a

) (
∀fi ∈ U (i)

f

)
aTi x+ fT

i y = bi, i = 1, . . . ,m,

x � 0, y � 0.

(2.7)

where c ∈ Rn, d ∈ Rd, aTi ∈ R1×n, fT
i ∈ R1×d and bi ∈ R for i = 1, . . . ,m, and the

decision variables are x ∈ Zn and y ∈ Rd. In this simple version of a robust mixed
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integer model, we assume that the individual rows, aTi and fT
i are known to belong to

given confidence sets, U (i)
a and U (i)

f for i = 1, . . . ,m. As the name suggests, the confidence
sets are sets of confidence for the coefficients for the model. The confidence sets may
contain a infinite number number of elements. The main idea in robust optimization is
to express the constraints associated with data uncertainty in some an alternative but
tractable form. Depending on the type and structure of the confidence sets, it may be
difficult to come up with a tractable representation for the robust optimization model.
However, there are notable exceptions for which a tractable representation is indeed
possible, and in such a case we say that the robust model is computationally tractable
(see Section 2.5).

2.3.6 Hypograph (epigraph) approach

Consider the following generic maximization problem

maximize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

(2.8)

with x ∈ Rn being the decision variable. The hypograph approach remodels the problem
into the following equivalent problem:

maximize t

subject to t ≤ f(x)

fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

(2.9)

where the decision variable is now (x, t) ∈ Rn+1, with (x, t) ∈ hypo f (hence the name
hypograph approach). Note that the objective function (0, 1)T (x, t) is a linear function.
Hypograph approach is often convenient in modeling complicated objective function.

Similarly, when we are dealing with a minimization problem, we can work with an
equivalent problem using epigraph approach. Let us replace maximize with minimize in
problems (2.8) and (2.9). Then in the modified problems (x, t) ∈ epi f (hence the name
epigraph approach).
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Figure 2.1: Illustration of the 1
e
heuristic

2.4 Lumping methods to calculate the area under a

curve

Finding the area under a curve arises frequently in almost all branches of science and
technology. Its enormous importance was one of the biggest, if not the biggest, practical
motivations behind the development of integral calculus. Integral calculus can often find
the areas under difficult curves exactly.

However, one of the underlying assumptions behind successful application of integral
calculus is the exact knowledge of the function describing the curve. In practice, we may
have little or no idea about the mathematical description of the associated curve. Rather,
what is available at hand is the set of measurement points of the curve at different data
points. So, the only way to find the area under such a curve is some numerical method.
As the integral is dependent on the data associated with a specific instance, a numerical
integration procedure gives little insight, can be time consuming, has little transfer value
and tends to be very sensitive to small changes in the observation [33, Section 3.1].

A workaround to the issues described above is provided by lumping methods, which
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almost always provide reasonable answers very quickly. Successful application of lumping
methods goes back to the early days of spectroscopy, which was instrumental in the
development of quantum mechanics [14]. A very important problem in spectroscopy is
finding the area under the curve associated with the radiation absorption of a molecule
at different wavelengths. Decades before digital chart recorders were invented, this area
was calculated successfully using lumping methods [33, page 35].

When there is a dominant peak in the curve, one of the most successful lumping
methods is the 1

e
heuristic. In this heuristic, we approximate the curve under considera-

tion by a rectangle as follows. The height of the rectangle is the height of the peak, and
the width is the interval with extreme points corresponding to points dropped at 1

e
of

the peak. Such rectangles are very robust approximations to the original curve [33, page
33-34]. The area of the rectangle, which is the height times the width, tends to be very
close to the area of the original curve. Figure 2.1 shows how the 1

e
heuristic is used to

approximate an arbitrary curve as a rectangle.

2.5 Computational tractability of optimization prob-

lems

In this section, we briefly discuss the tractability of optimization problems without en-
tering a technical discussion on computational complexity. We refer the interested reader
to the monograph [4] for a rigorous introduction to computational complexity. The com-
putational tractability of an optimization problem can vary widely depending on the
problem class it belongs to. Some problem classes, e.g., finding a solution to a finite
set of linear inequalities can be done very efficiently. However, some other classes of
problems are extremely hard to deal with.

Size of any instance of a particular optimization problem is measured by the number
of decision variables and constraints. An optimization problem is called tractable

• if a globally optimal solution can be found numerically in a reliable way for any
instance, and

• if the growth of computational effort required grows gracefully (e.g., logarithmically,
polynomially) with the size of the problem.

If the growth in computational effort is a polynomial in the size of the optimization
problem, then the associated optimization problem belongs to the class P . For example,
linear optimization problems discussed in 2.2.2 belongs to P . For some optimization
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problems there is no known way to find a globally optimal solution quickly, but if a
candidate point is provided, it is possible to do the verification in polynomial time, then
such problems belong to the class NP (which stands for nondeterministic polynomial
time) [4, Chapter 2]. A problem p is NP-hard, if every problem in the class NP can be
reduced to p in polynomial time. Informally, aNP-hard problem is at least as hard as the
hardest problems in NP . For example, mixed integer optimization problems described
in 2.2.3 is NP-hard [7, page 242].

It should be noted that the tractability of a problem often depends how the problem
is formulated and modeled. Two formulations that address the same problem may not
be of same tractability. A problem that may seem hard, even intractable, under a certain
formulation may well become tractable under some other formulation with some more
effort and intelligence. However, this may not always possible no matter how much effort
is put in formulating the problem, e.g., the traveling salesperson problem [4, page 40].



Chapter 3

Modeling a feasible railway timetable

This thesis is about maximizing the energy-efficiency of a feasible railway timetable.
So the first question is: what constraints do we need to consider to calculate a feasible
timetable? A feasible railway timetable needs to satisfy various requirements, which
include safety regulations, service levels and restrictions that consider the operational
feasibility of the railway management. In this chapter, we describe different constraints
that need to be obeyed in a feasible railway timetable. First, in Section 3.1 we introduce
the reader to various terms required to describe a railway network. Then in Section 3.2,
we describe the notation to describe those terms. Section 3.3 describes all the constraints
required to construct a feasible railway timetable. The constraints have been proven
to cover most practical needs and form the constraint set for the optimization models
described in Chapters 4 and 6. Section 3.4 describes the relation between passenger
demand, headway and number of trains.

3.1 Definition of various terms in a railway network

In this section we define and explain the physical meanings of various terms associated
with the description of a railway network. We do this for two reasons. First, though
the terms are fairly standard in railway research literature [36, 29, 30], we have noticed
that in some works, same terms have been used to denote different physical aspects of
the railway network with out clarification, thus causing confusion. By explicitly defining
the terms we avoid such confusions. Second, it helps the reader to be familiarized with
different physical aspects of a general railway network.

• Station: A station is a place where passenger trains stop on a railway line, typically
with platforms and buildings [12] .

20
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• Platform: A platform is a raised structure along the side of a railway track where
passengers get on and off trains at a station [12] . Along with this conventional
definition, any intermediate stopping point or turn-around point is also called a
platform in our report. A platform is associated with the direction of the trains
arriving at and departing from that platform. Generally the direction of a train
associated with a platform is fixed, i.e., the trains will always arrive to and depart
from that platform in the same direction, and we assume this to be the case in our
report. A station generally has more than one platform.

The concept of opposite platforms is very important for our model. Consider two
platforms situated at the same station. If the trains associated with the platforms
are opposite going, then we say those two platforms are opposite two each other. In
many railway networks the opposite platforms of the same railway station are sup-
plied energy by same substation and are appropriate candidates for the occurrence
of synchronization processes between suitable train pairs, because of the negligible
transmission loss.

• Track: A directed arc between two distinct and non-opposite platforms is called
a track. A track is used by a train to make a trip from one station to the next
in a certain direction. We assume that the direction associated with a track is
fixed. The first and second platforms associated with a track are called the origin
platform and the destination platform respectively, i.e., any train using that track
will depart from the origin platform and arrive at the destination platform. Two
tracks are called opposite to each other if the origin platform and the destination
platform of one track are opposite to the the destination platform and the origin
platform respectively of the other track.

• Train-line or line: A train-line or line is a directed path with the set of nodes
representing non-opposite platforms and the set of arcs representing non-opposite
tracks. In the set of arcs, the origin platform of the any track (except the first one)
is the same as the destination platforms of the previous track and the destination
platform of any track (except the last one) is the same as the origin platform of
the previous track. The set of nodes are the platforms corresponding to those arcs.
The origin platform of the first track and the destination platform of the final track
belonging to a line are called the terminal platforms for that line.

Consider any train-line, for which there exists another train-line such that both of
them has same number of platforms and arcs and each platform and track of the
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first line are opposite to some unique platform and unique track of the other line
respectively. Then the lines are called opposite to each other.

• Crossing-over: A crossing-over is a special type of directed arc that connects two
train lines. After arriving at the terminal platform of a train-line, a train often
turns around by traversing the crossing-over and starts traveling through another
train line. Though physically the train is the same as before, from a management
point of view the paths traversed by the train are different and often in opposite
direction. So, the same physical train is treated functionally as two different trains
by the railway management [36, page 41].

• Train-path or path: A train-path is a directed path, which represents all the
platforms and tracks on a line covered by a train in chronological order. In all of
the possible cases except two, the train-path of a train is just equal to the train-
line. The only exception is when a train arrives at some platform from the depot
or returns to the depot from a platform.

3.2 Notation to describe a railway network

Consider a railway network where the set of all stations is denoted by S. The set of
indices of the stations is denoted by IS = {1, 2, . . . , |S|}. The ith station is denoted by
S(i) where i ∈ IS . The set of all platforms in the railway network of our consideration is
indicated by N = {1, 2, . . . , |N |}. The set of all tracks are represented by A where,

∀a ∈ A ∃i ∈ N ∃j ∈ N \ {i} (a = (i, j)).

The directed graph of the railway network is expressed by G = (N ,A). For any two
platforms i, j ∈ N , we introduce a symmetric binary indicator πij ∈ {0, 1} which is
equal to one if they are opposite to each other and zero else. The indicator is sym-
metric, because for any two platforms i ∈ N and j ∈ N \ {i} we will always have
πij = πji. The set of all distinct opposite platform pairs ordered lexicographically is
denoted by O = {(i, j) ∈ N × N : (πij = 1) ∧ (i < j)}. The set of every dis-
tinct opposite platform pair powered by same substation is denoted by Ω = {(i, j) ∈
O : there exists a substation which powers both i and j} ⊆ O. For any two tracks
(i, j), (j′, i′) ∈ A, they are opposite to each other if πii′ = 1 ∧ πjj′ = 1.

The set of indices of all train lines present in the railway network is denoted by
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L = {1, 2, . . . , |L|}. As defined previously, the platforms belonging to the same line are
non-opposite, i.e.,

∀l ∈ L ∀i ∈ Nl ∀j ∈ Nl \ {i} (πij = 0)

Note that the non-oppositeness of the tracks is implied by the non-oppositeness of plat-
forms on that line.

Consider two different lines l, l′ ∈ L. They are opposite two each other if:

|Nl| = |Nl′ | ∧
(
∀i ∈ INl

(πNl(i)Nl′ (|Nl|+1−i) = 1)
)

The set of all trains to be considered in our problem is denoted by T = {1, 2, . . . , |T |}.
The enumeration of the trains in the set T is based on two properties, which we describe
as follows:

• The path of a train t ∈ T is a directed path denoted by:

P t =
(
N t(1),At(1),N t(2),At(2), . . . ,At(|At|),N t(|N t|)

)
where N t ⊆ N and At ⊆ A are the set of all platforms and tracks visited by the train
t in chronological order respectively. The path of any train is always limited along a
unique train line, i.e.,

∀t ∈ T ∃!l ∈ L (P t ⊆ Pl)

In the existential quantifier of the equation above, the symbol ! stands for uniqueness of
the line l. As discussed previously, in all the cases except those involving the depot, this
set relation is equality, i.e., the train-path is equal to the path of the associated train-line.
If the same physical train crosses over to a new line, it will be labeled as another train
in T , even if it is physically the same.

• Different trains can have same path only if the time intervals in which they traverse
the common path are different.

The decision variables to be determined in our problem are the arrival and departure
times of trains to and from the associated platforms respectively. The decision variables
in our optimization problem are also called event times. Let ati be t and dtj be the
departure time of train t from platform j ∈ N t.
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3.3 Constraints in a railway network

3.3.1 Trip time constraint

The trip time constraints play the most important role in train energy consumption and
regenerative energy production. These can be of two types as follows.

Trip time constraint associated with a track

Consider the trip of any train t ∈ T from platform i to platform j along the track
(i, j) ∈ At. The train t departs from platform i at time dti, arrives at platform j at time
atj, and it can have a trip time between τ tij and τ tij. The trip time constraint can be
written as follows:

∀t ∈ T ∀(i, j) ∈ At τ tij ≤ atj − dti ≤ τ tij. (3.1)

Trip time constraint associated with a crossing-over

Recall that, a crossing-over is a special type of directed arc that connects two train-
lines. After arriving at the terminal platform of a train-line when a train turns around
by traversing the crossing-over and starts traveling through another train-line, then the
same physical train is treated and labelled functionally as two different trains by the
railway management (Section 3.1). Let ϕ be , where turn-around events occur. Consider
any crossing-over (i, j) ∈ ϕ, where the platforms i and j are situated on different train-
lines. Let Bij be the set of all train pairs involved in corresponding turn-around events
on the crossing-over (i, j). Let (t, t′) ∈ Bij. Train t ∈ T turns around at platform i by
travelling through the crossing-over (i, j), and beginning from platform j starts traversing
a different train-line as train t′ ∈ T \ {t}. A time window [κtt

′
ij , κ

tt′
ij ] has to be maintained

between the departure of the train from platform i (labelled as train t) and arrival at
platform j (labelled as train t′). We can write this constraint as follows:

∀(i, j) ∈ ϕ ∀(t, t′) ∈ Bij κtt
′

ij ≤ at
′

j − dti ≤ κtt
′

ij . (3.2)

To clearly illustrate the constraint we consider Figure 3.1. Here we have two train lines:
line 1 and line 2. The terminal platform on line 1 is platform i and the first platform on
line 2 is platform j. The crossing-over from line 1 to line 2 is the arc (i, j). The train
shown in the figure is labelled as t on platform i and labelled as train t′ on platform j.
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Figure 3.1: Trip time constraint associated with a crossing-over

3.3.2 Dwell time constraint

When any train t ∈ T arrives at a platform i ∈ N t, it dwells there for a certain time
interval denoted by [δti, δ

t

i] so that the passengers can get off and get on the train prior
to its departure from platform j. The dwell time constraint can be written as follows:

∀t ∈ T ∀i ∈ N t δti ≤ dti − ati ≤ δ
t

i. (3.3)

Every train t ∈ T arrives at the first platform N t(1) in its train-path either from the
depot or by turning around from some other line, and departs from the final platform
N t(|N t|) in order to either return to the depot or start as a new train on another line
by turning around. So, the train t dwells at all platforms in N t. This is the reason why
in Equation (3.3) the platform index i is varied over all elements of the set N t.

3.3.3 Connection constraint

In many cases, a single train connection might not exist between the origin and the
desired destination of a passenger. To circumvent this, connecting trains are often used
at interchange stations. Let χ ⊆ N ×N be the set of all platform pairs situated at the
same interchange stations, where passengers transfer between trains. Let Cij be the set
of connecting train pairs for a platform pair (i, j) ∈ χ. For a train pair (t, t′) ∈ Cij, train
t is arriving at platform i and train t′ ∈ T is departing from platform j. A connection
time window denoted by [χtt′

ij
, χtt′

ij ] is maintained between arrival of t and subsequent
departure of t′, so that passengers can get off from the first train and get on the latter.
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Let (i, j) ∈ χ. Then the connection constraint can be written as:

∀(i, j) ∈ χ ∀(t, t′) ∈ Cij χtt′

ij
≤ dt

′

j − ati ≤ χtt′

ij . (3.4)

3.3.4 Headway constraint

In any railway network, a minimum amount of time between the departures and arrivals
of consecutive trains on the same track is maintained. This time is called headway time.
For maintaining the quality of passenger service, many urban railway system keeps an
upper bound between the arrivals and departures of successive trains on the same track,
so that passengers do not have to wait too long before the next train comes. Let (i, j) ∈ A
be the track between two platforms i and j, and Hij be the set of train-pairs who move
along that track successively in order of their departures. Consider (t, t′) ∈ Hij, and
let [htt

′

i , h
tt′

i ] and [htt
′

j , h
tt′

j ] be the time windows that have to be maintained between
the departures and arrivals of the trains t and t′ from and to the platforms i and j

respectively. So, the headway constraint can be written as:

∀(i, j) ∈ A ∀(t, t′) ∈ Hij htt
′

i ≤ dt
′

i − dti ≤ h
tt′

i ∧ htt
′

j ≤ at
′

j − atj ≤ h
tt′

j . (3.5)

Similarly, headway times have to be maintained between two consecutive trains going
through a crossing over. Consider any crossing over (i, j) ∈ ϕ and two such trains, which
leave the terminal platform of a train-line i labelled as t1 and t2, traverse the crossing
over (i, j), and arrive at platform j of some other train-line labelled as t′1 and t′2. The
set of all such train quartets ((t1, t

′
1), (t2, t

′
2)) is represented by H̃ij. Let [ht1t2i , h

t1t2
i ] be

the headway time window between the departures of trains t1 and t2 from platform i and
[h

t′1t
′
2

j , h
t′1t

′
2

j ] be the headway time window between the arrivals of the trains t′1 and t′2 to
the platforms j. The associated headway constraints can be written as:

∀(i, j) ∈ ϕ ∀((t1, t′1), (t2, t
′
2)) ∈ H̃ij ht1t2i ≤ dt2i − d

t1
i ≤ h

t1t2
i ∧ h

t′1t
′
2

j ≤ a
t′2
j − a

t′1
j ≤ h

t′1t
′
2

j .

(3.6)

3.3.5 Total travel time constraint

Recall that, the train-path of a train is the directed path containing all platforms and
tracks visited by it in chronological order. To maintain the quality of service in the
railway network, for every train t ∈ T , the total travel time to traverse its train-path P t
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has to stay within a time window [τ tP , τ
t
P ]. We can write this constraint as follows:

∀t ∈ T τ tP ≤ atN t(|N t|) − dtN t(1) ≤ τ tP , (3.7)

where N t(1) and N t(|N t|) are the first and last platform in the train-path of t.

3.3.6 Domain of the event times

Without any loss of generality, we set the time of the first event of the railway service
period, which corresponds to the departure of the first train of the day from some plat-
form, to start at zero second. By setting all trip times and dwell times to their maximum
possible values we can obtain an upper bound for the final event of the railway service
period, which is the arrival of the last train of the day at some platform, denoted by
m ∈ Z++. So the domain of the decision variables can be expressed by the following
equation:

∀t ∈ T ∀i ∈ N t 0 ≤ ati ≤ m, 0 ≤ dti ≤ m. (3.8)

In vector notation the decision variables are denoted by a = ((ati)i∈N t)t∈T and d =

((dti)i∈N t)t∈T .

3.4 Relation between passenger demand, headway and

number of trains

Now we discuss the relation between passenger demand, headway and number of trains.
We denote the passenger demand by D, train capacity by c and utilization rate by u. If
we denote the number of trains in service per hour by n, then we have D = c×u×n[27].
Because the headway time h satisfies the relation h = 3600

n
, we have

h =
3600× c× u

D
. (3.9)

It should be noted that the train capacity c and the utilization rate u are constant
parameters. However the passenger demand varies with time. As a result, in the equation
above trains will have different headway at different periods.



Chapter 4

A robust mixed integer optimization
model

In this chapter we present a robust mixed integer optimization model to utilize the
regenerative braking energy produced by trains in a railway network. The optimization
model calculates a railway timetable that saves regenerative energy of braking trains by
transferring it to suitable accelerating trains in need of energy. This chapter is organized
as follows. In Section 4.1 we describe the relevant event times of a train around a
platform. Then, in the next section we characterize the train pairs and the associated
platform pairs necessary to describe the synchronization processes between suitable train
pairs. Section 4.3 describes the structure of the optimization model. Sections 4.4 and
4.5 model the objective function of the optimization problem using hypograph approach
and interval algebra. Then in Section 4.6, we collect the objective and all the constraints
for the optimization problem and present the full optimization problem. Section 4.7
describes the limitations of the optimization model.

4.1 Relevant event times of a train around a platform

Recall from our discussion in Section 1.1 that the energy consumption and regeneration
of a train is associated with its acceleration phase and braking phase during its trip
from an origin platform to a destination platform. However, when we are calculating a
timetable, our decision variables are the event times, i.e., the departure and arrival times
of the train (See Section 3.2). So, first we need to relate these event times to the braking
and acceleration phases in a rigorous manner.

Consider any platform pair (i, j) ∈ Ω and consider any train t. In chronological order
the relevant event times of train t around platform i are as follows:

28
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1. Start of the braking phase of the train in order to stop at platform i denoted by
at−i .

2. The arrival of the train at platform i denoted by ati = at−i + βt
i , where βt

i is the
duration of the braking phase. The arrival concludes the braking phase of the train
around platform i and begins the dwelling process at platform i.

3. The departure of the train from platform j denoted by dti, which concludes the
dwelling process of train i at platform i and begins the acceleration phase of the
train around platform i.

4. The acceleration process ends at dt+i = dti + αt
i, where αt

i is the duration of the
acceleration phase.

The mentioned events above are expressed as rectangular temporal blocks in the top
part of the Figure 4.1, where the bottom part shows the corresponding speed-profile. In
the figure, the rectangles represent the braking phase, dwelling process and acceleration
phase from left to right. The left side of a rectangle denotes the beginning of the associ-
ated process and the right side represents the end. To model the objective function, we
work with these temporal blocks in this chapter.

4.2 Synchronization process between suitable train pairs

(SPSTP)

At first, we need to characterize the train pairs and the associated platform pairs nec-
essary to describe the SPSTPs. The transmission loss in transferring electrical energy
between two trains is proportional to the distance between them [42, Chapter 3]. If we
consider two trains who are opposite to each other on the same station, the distance be-
tween them is relatively small. As a result, the transmission loss in transferring electrical
energy between them would be negligible in comparison with trains situated at different
stations. So, the platform pairs to consider are those opposite to each other and powered
by the same electrical substations. Recall that, the set that contains all such platform
pairs is denoted by Ω. Consider any such platform pair (i, j) ∈ Ω, and let Ti ⊆ T be
the set of all the trains which arrive at, dwell and then depart from platform i. Suppose,
t ∈ Ti. Now, we are interested to find another train t̃ on platform j, i.e., t̃ ∈ Tj, which
along with t would form a suitable pair for the transfer of regenerative braking energy. To
achieve this, we start with an initial feasible timetable for the railway, which represents
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Figure 4.1: Rectangular blocks to indicate temporal events of train t around platform i
(top) and the associated speed profile (bottom)
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the desired service to be delivered. Too much deviation from it is not desired. For every
train t, this timetable provides a feasible arrival time āti and a feasible departure time d̄ti
to and from every platform i ∈ N t respectively. Intuitively, among all the trains that go
through platform j, the one which is temporally closest to t in the initial timetable would
be the best candidate to form a pair with t. The alternative choices are not feasible with
the current technology as discussed below.

Two trains with same direction on the same station. For transfer of regen-
erative energy, one of the trains has to be in its braking phase and the other one in
accelerating phase. Because we always need to maintain the safety (headway) distance
between two trains on the same track, when a train goes into the braking phase, the
platform it enters cannot be occupied by another train for safety reason. So picking two
trains (one accelerating and one braking) at the same platform for synchronization is not
feasible from a safety point of view.

Trains on different stations. Suppose we pick two trains for possible transfer which
are at least one station apart. The first problem with this is just the in-feasibility of the
strategy with the current technology. Currently the regenerative energy is transferred
between opposite platforms by installing super-capacitors on the overhead line [10]. To
do this reliably over two stations would require either 1) the entire overhead line to act as
a super-capacitor (to prevent the fluctuation of the line voltage [5]) which is not feasible,
or 2) transfer the energy to the power grid and then from power grid to the other station,
which requires specialized technology such as reversible electrical substations [15, page
30]. Another problem is that a large portion of the regenerative energy will be lost due
to transmission loss.

The temporal proximity can be of two types with respect to t, which results in the
following definitions.

Definition 4.1. Consider any (i, j) ∈ Ω. For every train t ∈ Ti, the train
⇀
t ∈ Tj is

called the temporally closest train to the right of t if

⇀
t = argmin

t′∈{x∈Tj :0≤
āx
j

+d̄x
j

2
−

āt
i
+d̄t

i
2
≤r}

{∣∣∣∣∣ āti + d̄ti
2
−
āt

′
j + d̄t

′
j

2

∣∣∣∣∣
}
, (4.1)

where r is an empirical parameter determined by the timetable designer and is much
smaller than the time horizon of the entire timetable.

Definition 4.2. Consider any (i, j) ∈ Ω. For every train t ∈ Ti, the train
↼
t ∈ Tj is
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Figure 4.2: For platform pair (i, j) ∈ Ω and train t ∈ Ti the figure shows temporally
closest train to t’s left

↼
t (corresponding to the green temporal blocks) and temporally

closest train to t’s right
⇀
t (corresponding to the red temporal blocks). Here t̃ =

⇀
t .

called the temporally closest train to the left of t if

↼
t = argmin

t′∈{x∈Tj :0<
āt
i
+d̄t

i
2
−

āx
j

+d̄x
j

2
≤r}

{∣∣∣∣∣ āti + d̄ti
2
−
āt

′
j + d̄t

′
j

2

∣∣∣∣∣
}
. (4.2)

Definition 4.3. Consider any (i, j) ∈ Ω. For every train t ∈ Ti, the train t̃ ∈ Tj is called
the temporally closest train to t if

t̃ = argmin
t′∈{

⇀
t ,

↼
t }

{∣∣∣∣∣ āti + d̄ti
2
−
āt

′
j + d̄t

′
j

2

∣∣∣∣∣
}
. (4.3)

If both
⇀
t and

↼
t are temporally equidistant from t, we pick one of them arbitrarily.

Figure 4.2 illustrates the concepts discussed above, where for (i, j) ∈ Ω and t ∈ Ti
we have shown the temporally closest train to its left and right. In the figure,

⇀
t = t̃. If

both
⇀
t and

⇀
t are temporally equidistant from t in the sense of our proposed definitions,

we pick one of them arbitrarily.
Among all the trains t′ ∈ Tj, train t̃ is the best candidate to make a transfer of

regenerative energy with t. This transfer can be of two types as follows which is going
to determine our optimization strategy:

• If t̃ =
⇀
t , then it would be convenient to synchronize the acceleration phase of t
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Figure 4.3: Applying the optimization strategy for the case t̃ =
⇀
t , when there is no

constraint. The left hand side and right hand side of the arrows correspond to the
initial timetable and the final timetable respectively. The shaded regions represent the
overlapping time between trains.

with the braking phase of
⇀
t . Our optimization strategy in this case would be to

maximize the overlapping time between the two mentioned phases subject to the
constraints in the railway network.

Figure 4.3 shows how our optimization strategy will maximize the overlapping time
of a synchronization processes between a suitable train pair in this case, when there is
no constraint. In the presence of other constraints, the maximized overlapping time will
be less than or equal to the one in the figure; it might even be zero if doing otherwise
violates some constraint.

• If t̃ =
↼
t , then it would be convenient to synchronize the acceleration phase of

↼
t

with the braking phase of t. Our optimization strategy in this case would be to
maximize the overlapping time between the two mentioned phases.

Figure 4.4 shows how our optimization strategy will maximize the overlapping time
of a synchronization process between a suitable train pair in this case, when there is no
constraint. Just like the previous case, in the presence of other constraints, the maximized
overlapping time will be less than or equal to the one in the figure; it might even be zero
if doing otherwise violates some constraint.
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Figure 4.4: Applying the optimization strategy for the case t̃ =
↼
t , when there is no

constraint. The left hand side and right hand side of the arrows correspond to the
initial timetable and the final timetable respectively. The shaded regions represent the
overlapping time between trains.
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We do not model our objective to simultaneously maximize the intersecting time
between acceleration phase of

↼
t with the braking phase of t and the acceleration phase

of t with the braking phase of
⇀
t , because this strategy will not be very effective in

practice. The reasons behind that are as follows:

1. If such a strategy is followed and achieved, then the temporal events corresponding
⇀
t and

↼
t will be very close to each other, which might lead to constraint violation.

Even if no constraint is violated, keeping two trains
⇀
t and

↼
t so close is not desired

from a practical point of view, as any sort of disturbance might result in some
constraint violation. This is shown in Figure 4.5.

1. Consider any track (k, l) ∈ A and any train pair (t, t′) on the same track. Let

(k′, l′) be the opposite track of (k, l). It may happen that,
⇀
t =

↼

t′ , i.e., what is the
temporally closest train to the right of train t is the temporally closest train to the
left for train t′. Now consider the case when t̃ =

⇀
t and t̃′ 6=

↼

t′ , then the strategy
(the strategy that we have discarded, not the original one) will explicitly try to

shift the events associated with
⇀
t =

↼

t′ to opposite directions, which is not desired
as compared to original optimization strategy in this case twice the computational
effort will be spent to find a cost increasing direction, yet the post-optimization
scenario will be the same. Figure 4.6 illustrates this case.

4.3 Structure of the optimization model

Any SPSTP can be described by specifying the corresponding i, j, t and t̃ by using the
definitions above. We construct a set of all the SPSTPs, which we denote by E . Each
element of this set is a tuple of the form (i, j, t, t̃). Because t̃ is unique for any t in
each element of E , we can partition E into two sets denoted by

⇀

E and
↼

E , which contain
elements of the form (i, j, t,

⇀
t ) and (i, j, t,

↼
t ) respectively. For every (i, j, t,

⇀
t ) ∈

⇀

E
(called right event), our strategy is to synchronize the accelerating phase of t with the
braking phase of

⇀
t . On the other hand, for every (i, j, t,

↼
t ) ∈

↼

E (called left event), it is
convenient to synchronize the accelerating phase of

↼
t with the braking phase of t. For

every (i, j, t,
⇀
t ) ∈

⇀

E , the corresponding overlapping time is denoted by σt
⇀
t

ij , (called right

event overlapping time) and for every (i, j, t,
↼
t ) ∈

↼

E , the corresponding overlapping time
is denoted by σt

↼
t

ij (called left event overlapping time). Our objective is to maximize the

sum of the right event and left event overlapping times over all the elements of
⇀

E and
↼

E ,
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Figure 4.5: If we simultaneously maximize the overlapping time between acceleration
phase of

↼
t with the braking phase of t and the acceleration phase of t with the braking

phase of
⇀
t , after applying such a strategy

⇀
t and

↼
t might be very close to each other

which is not desired in practical situations. The top and bottom part of the figure show
the pre-optimization and the post-optimization scenario respectively for such a case.
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Figure 4.6: If we simultaneously maximize the overlapping time between acceleration
phase of t with the braking phase of

↼
t and the acceleration phase of

⇀
t =

↼

t′ with the
braking phase of t′, after applying such a strategy, computational effort would be spent
in trying shift the events associated with

⇀
t =

↼

t′ to opposite directions, where only the
first one is achievable.
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i.e., the objective function is ∑
(i,j,t,

⇀
t )∈

⇀
E

σt
⇀
t

ij +
∑

(i,j,t,
↼
t )∈

↼
E

σt
↼
t

ij , (4.4)

and the optimization problem is

maximize
∑

(i,j,t,
⇀
t )∈

⇀
E

σt
⇀
t

ij +
∑

(i,j,t,
↼
t )∈

↼
E

σt
↼
t

ij

subject to

Equations (3.1), (3.3), (3.4), (3.2), (3.5) and (3.7)

∀t ∈ T ∀i ∈ N t (ati ≥ 0, dti ≥ 0)

∀(i, j, t, t̃) ∈ E (σtt̃
ij ≥ 0),

We model σt
⇀
t

ij for all (i, j, t,
⇀
t ) ∈

⇀

E and σt
↼
t

ij for all (i, j, t,
↼
t ) ∈

↼

E in terms of the arrival

and departure times of trains. Consider the case, when (i, j, t,
⇀
t ) ∈

⇀

E . We need to ensure
that after we apply the optimization strategy,

⇀
t still stays the temporally closest train

to the right of t. Otherwise, the only way to achieve a positive overlapping time is to
synchronize the braking phase of t with the accelerating phase of

⇀
t , which might result

in a large deviation of event times compared to the original timetable, especially when
there is no or very little overlapping to begin with. We write this constraint as follows:(

a
⇀
t
j + d

⇀
t
j − ati − dti

)
(
ā

⇀
t
j + d̄

⇀
t
j − āti − d̄ti + ε

) ≥ 0. (4.5)

Here ε is a very small positive number to prevent division by zero. A graphical
illustration of this constraint is shown in Figure 4.7.

4.4 Modeling overlapping time for right events

Let us denote the start of the braking phase of train t before arriving at platform i by at−i
and the end of its accelerating phase after departing from the same platform by dt+i . For
all t ∈ T and for all i ∈ N t, the duration of the associated braking phase is βt

i = ati−at−i
and the duration of the associated accelerating phase is αt

i = dt+i − dti. Depending on
the trip time of the associated trip in consideration, both the durations are within some
time bounds, i.e., αt

i ∈ [αt
i, α

t
i] and βt

i ∈ [βt

i
, β

t

i]. Though we do not know the optimal
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Figure 4.7: Graphical illustration of the constraint described by Equation (4.5), which
prevents the occurrence of the cross-marked situations
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Figure 4.8: All possible overlapping times between the accelerating phase of train t and
braking phase of its temporally closest train
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trip time of the trains in advance, these lower and upper bounds can be calculated by
existing software [43, page 3]. For the same reason, the start of the braking phase and
end of the accelerating phase are within time bounds described by at−i ∈ [ati−β

t

i, a
t
i−βt

i
]

and dt+i ∈ [dti + αt
i, d

t
i + αt

i]. All the time bounds are on the order of seconds, as the
trip time variation are on the order of seconds, so it is reasonable to pursue a robust
formulation. To model the right event overlapping time σt

⇀
t

ij for all (i, j, t,
⇀
t ) ∈

⇀

E , we
propose the following lemma.

Lemma 4.4. For all (i, j, t,
⇀
t ) ∈

⇀

E , the right event overlapping time σt
⇀
t

ij in Equation
4.4 satisfies the following constraints

a
⇀
t
j − dti + ε ≤ αt

i + β
⇀
t

j
+M(1− λt

⇀
t

ij ), (4.6)

dti − a
⇀
t
j + ε ≤M(1− λt

⇀
t

ij ), (4.7)

σt
⇀
t

ij ≥ 0, (4.8)

σt
⇀
t

ij ≤ αt
iλ

t
⇀
t

ij , (4.9)

σt
⇀
t

ij ≤ β
⇀
t

j
λt

⇀
t

ij , (4.10)

σt
⇀
t

ij ≤ dti − a
⇀
t
j + αt

i + β
⇀
t

j
+M(1− λt

⇀
t

ij ), (4.11)

σt
⇀
t

ij ≤ a
⇀
t
j − dti +M(1− λt

⇀
t

ij ). (4.12)

where M is a large positive number, ε is a small positive number smaller than time
granularity considered and λt

⇀
t

ij is a binary variable which is one if and only if σt
⇀
t

ij is
positive.

Proof. We provide a robust formulation to prove the lemma. We use the hypograph
approach to model the overlapping time σt

⇀
t

ij in terms of the associated event times [8,
page 75, 134]. Consider any at−i ∈ [ati − β

t

i, a
t
i − βt

i
] and any dt+i ∈ [dti + αt

i, d
t
i + αt

i] for
some trip time. From Interval algebra [3], we know that there can be thirteen different
kinds of overlapping possible between the accelerating phase of train t and the braking
phase of train

⇀
t as shown in Figure 4.8. However, there is structure among these thirteen

relationships when we are concerned with the associated overlapping time σt
⇀
t

ij . Among

them, when a
⇀
t −
j ≥ dt+i or a

⇀
t
j ≤ dti there will be no overlapping, i.e., σt

⇀
t

ij = 0. We
will model this scenario using the binary indicator variable λtt′ij . If any of the conditions

a
⇀
t −
j ≥ dt+i or a

⇀
t
j ≤ dti occurs, then λt

⇀
t

ij is zero, i.e.,(
(a

⇀
t −
j ≥ dt+i ) ∨ (a

⇀
t
j ≤ dti)

)
⇒ (λt

⇀
t

ij = 0) (4.13)
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If λt
⇀
t

ij is zero, then the overlapping time will be zero, i.e.,

(λt
⇀
t

ij = 0)⇒ (σt
⇀
t

ij = 0)

⇔(σt
⇀
t

ij > 0)⇒ (λt
⇀
t

ij = 1), [as σt
⇀
t

ij ≮ 0]. (4.14)

The Equations (4.13)-(4.14) are not in mathematical programming format. Using
integer programming modelling rules [45, pages 166, 172-174, 183-184], we can model
them as follows:

a
⇀
t −
j − dt+i + ε ≤M(1− λt

⇀
t

ij ), (4.15)

dti − a
⇀
t
j + ε ≤M(1− λt

⇀
t

ij ), (4.16)

σt
⇀
t

ij ≥ 0, (4.17)

σt
⇀
t

ij ≤Mλt
⇀
t

ij . (4.18)

When (a
⇀
t −
j < dt+i ) and (a

⇀
t
j > dti), we can see from Figure 4.8 that the overlapping

time is min{dt+i , a
⇀
t
j } − max{dti, a

⇀
t −
j } > 0. Now we want to model the following logical

condition

(λt
⇀
t

ij = 1)⇒ (σt
⇀
t

ij = min{dt+i , a
⇀
t
j } −max{dti, a

⇀
t −
j })

using mathematical programming. Using integer programming modelling rules we can
model this situation as follows:

σt
⇀
t

ij ≤ αt
iλ

t
⇀
t

ij , (4.19)

σt
⇀
t

ij ≤ β
⇀
t
j λ

t
⇀
t

ij , (4.20)

σt
⇀
t

ij ≤ dt+i − a
⇀
t −
j +M(1− λt

⇀
t

ij ), (4.21)

σt
⇀
t

ij ≤ a
⇀
t
j − dti +M(1− λt

⇀
t

ij ). (4.22)

Combining Equations (4.15)-(4.18) and Equations (4.19)-(4.22), and using the fact that
M � max{αt

i, β
⇀
t
j }, for any at−i ∈ [ati − β

t

i, a
t
i − βt

i
] and any dt+i ∈ [dti + αt

i, d
t
i + αt

i] we
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arrive at the following set of equations:

a
⇀
t −
j − dt+i + ε ≤M(1− λt

⇀
t

ij ),

dti − a
⇀
t
j + ε ≤M(1− λt

⇀
t

ij ),

σt
⇀
t

ij ≥ 0,

σt
⇀
t

ij ≤ αt
iλ

t
⇀
t

ij ,

σt
⇀
t

ij ≤ β
⇀
t
j λ

t
⇀
t

ij ,

σt
⇀
t

ij ≤ dt+i − a
⇀
t −
j +M(1− λt

⇀
t

ij ),

σt
⇀
t

ij ≤ a
⇀
t
j − dti +M(1− λt

⇀
t

ij ).

Using at−i ∈ [ati − β
t

i, a
t
i − βt

i
] and dt+i ∈ [dti + αt

i, d
t
i + αt

i], the equations above can be
transformed into the following robust formulation:

a
⇀
t
j − dti + ε ≤ αt

i + β
⇀
t

j
+M(1− λt

⇀
t

ij ),

dti − a
⇀
t
j + ε ≤M(1− λt

⇀
t

ij ),

σt
⇀
t

ij ≥ 0,

σt
⇀
t

ij ≤ αt
iλ

t
⇀
t

ij ,

σt
⇀
t

ij ≤ β
⇀
t

j
λt

⇀
t

ij ,

σt
⇀
t

ij ≤ dti − a
⇀
t
j + αt

i + β
⇀
t

j
+M(1− λt

⇀
t

ij ),

σt
⇀
t

ij ≤ a
⇀
t
j − dti +M(1− λt

⇀
t

ij ),

4.5 Modeling overlapping time for left events

Now consider the case when (i, j, t,
↼
t ) ∈

↼

E . Like the previous case, we need to ensure
that after we apply the optimization strategy,

↼
t still stays the temporally closest train

to the left of t. An analogous constraint to that of Equation (4.5) can be easily found by
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replacing t and
⇀
t in Equation (4.5) with

↼
t and t respectively as follows:(

ati + dti − a
↼
t
j − d

↼
t
j

)
(
āti + d̄ti − ā

↼
t
j − d̄

↼
t
j

) ≥ 0. (4.23)

Note that the denominator can never be zero on the left hand side of the equation
above because of the definition of

↼
t in Equation (4.2). To model the left event overlapping

time σt
↼
t

ij for all (i, j, t,
↼
t ) ∈

↼

E , we propose the following lemma.

Lemma 4.5. For all (i, j, t,
↼
t ) ∈

↼

E , the left event overlapping time σt
↼
t

ij in Equation 4.4
is represented by the following constraints

ati − d
↼
t
j + ε ≤ α

↼
t
i + βt

j
+M(1− λt

↼
t

ij ), (4.24)

d
↼
t
j − ati + ε ≤M(1− λt

↼
t

ij ), (4.25)

σt
↼
t

ij ≥ 0, (4.26)

σt
↼
t

ij ≤ α
↼
t
j λ

t
↼
t

ij , (4.27)

σt
↼
t

ij ≤ βt

i
λt

↼
t

ij , (4.28)

σt
↼
t

ij ≤ d
↼
t
j − ati + α

↼
t
i + βt

j
+M(1− λt

↼
t

ij ), (4.29)

σt
↼
t

ij ≤ ati − d
↼
t
j +M(1− λt

↼
t

ij ), (4.30)

where M is a large positive number, ε is a small positive number smaller than time
granularity considered and λt

↼
t

ij is a binary variable which is one if and only if σt
↼
t

ij is
positive.

Proof. The lemma can be easily proved by replacing i, j, t and
⇀
t with j, i,

↼
t and t

respectively in Lemma 4.4.

4.6 Full optimization model

In this section we collect the objective and all the constraints discussed in the previous
sections, and propose our optimization problem to maximize the total duration of over-
lapping times of the SPSTPs in order to utilize regenerative braking energy produced by
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trains in a railway network. The full optimization model is as follows:

maximize
∑

(i,j,t,
⇀
t )∈

⇀
E

σt
⇀
t

ij +
∑

(i,j,t,
↼
t )∈

↼
E

σt
↼
t

ij

subject to

Equations (3.1), (3.3), (3.4), (3.2), (3.5) and (3.7)

∀(i, j, t,
⇀
t ) ∈

⇀

E Equations (4.5),(4.6)-(4.12)

∀(i, j, t,
↼
t ) ∈

↼

E Equations (4.23),(4.24)-(4.30)

∀t ∈ T ∀i ∈ N t (ati ≥ 0, dti ≥ 0)

∀(i, j, t, t̃) ∈ E (λtt̃ij ∈ {0, 1}, σtt̃
ij ≥ 0),

where the decision variables are ati, dti, λtt̃ij and σtt̃
ij.

As the model is a MIP with bounds, the optimization problem is NP-hard (Section
2.5). However, in the next chapter we show that for the size of the railway data spanning
six hours, the running time is quite acceptable.

4.7 Limitations of the model

In this section we discuss the limitations of the optimization model, which are as follows.

• The model presented in this chapter has NP-hard computational complexity. As a
result, solving the underlying optimization problem will always require an exponen-
tial amount of time in the worst case. When it comes to real life implementation
an optimization model, computational tractability is a really important factor. In
this regard, seeking an optimization model that can be solved in polynomial time
is of vital importance.

• The model tries to transfer regenerative energy from the braking train to the ac-
celerating train by maximizing the overlapping time between the temporal blocks
associated with the acceleration and braking phases. Though this is a reasonable
strategy, maximizing the overlapping time may not necessarily maximize the trans-
fer of regenerative energy. We address this issue in the second optimization model
(Chapter 6).

• The goal of this model is to increase energy efficiency of the timetable by saving
regenerative energy of braking trains. However a significant amount electrical en-
ergy is also spent by trains while making trips from origin platforms to destination
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platforms. So, incorporating an objective to minimize the energy consumption as-
sociated with these trips can increase the overall energy efficiency of a timetable.
This will be addressed in Chapter 6.



Chapter 5

Numerical experiments for the robust
MIP model

In this section we apply our model described Chapter 4 to two different railway networks
associated with the Shanghai Metro Network (shown in Figure 5.1) and Dockland Light
Railway (shown in Figure 5.2) respectively. For the first study we have access to energy
data for the trains. This allows us to calculate the reduction in effective energy con-
sumption (explained in Subsection 5.1 below) for the optimal timetables in comparison
with the initial timetables. However, for the second study, we do not have access to such
energy data, and we can only compare the increase in the total overlapping time. In
model (4.6), we have taken M = 1000 and ε = 0.005.

5.1 Shanghai Metro network

In this subsection we apply our model to nine different problem instances to service
PES2-SFM2 of line 8 of Shanghai Metro network, as shown in Figure 5.1. The number of
trains, headway times, speed of the involved trains, the grades of the tracks and nature
of the energy profile of the associated acceleration and braking phases are different for
different instances. Shanghai Metro is the world’s largest rapid transit system by route
length, second largest by number of stations (after Beijing), and third oldest rapid transit
system in mainland China. Line 8, opened on December of 2007, is one of the 14 lines
of the Shanghai Metro Network. It passes by some of Shanghai’s densest neighborhoods,
and has a daily ridership of approximately 1.08 million (2014 peak). This line is 37.4 km
long with 28 stations in operation [16]. There are two lines in this network: Line 1 and
Line 2. There are fourteen stations in the network denoted by all capitalized words in the
figure. Each station has two platforms each on different train lines, e.g., LXM is station

47
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that has two opposite platforms: LXM1 and LXM2 on Line 1 and Line 2 respectively.
The platforms are denoted by rectangles. The platforms indicated by PES2 and SFM2
are the turn-around points on Line 2, with the crossing-overs being PES2-GRW1 and
LHS1-SFM2.

Now we provide some relevant information regarding the railway network in consid-
eration. The line is 37 km long. The average distance between two stations in this
network is 1.4 km, with the minimum distance being 738 m (between YHR and ZJD)
and maximum distance being 2.6 km (between PJT and LHR). The slope of the track is
in [−2.00453◦, 2.00453◦]. The maximum allowable acceleration of a train is 1.04 m/s2 at
accelerating phase. The maximum allowable deceleration rate of a train during coasting
phase is -0.2 m/s2. The maximum allowable deceleration of a train during braking phase
is -0.8 m/s2. The conversion factor from electricity to kinetic energy is 0.9, and the
conversion factor from kinetic to regenerative braking energy is 0.76. The transmission
loss factor of regenerative electricity is 0.1. The mass of the train is in [229370, 361520]

kg, with the average mass being 295445 kg.

The data on speed limit is described by Table 8.1 in Appendix. The speed limit data
are based on grade and curvature of the tracks, and operational constraints present in the
system. For the railway network, the tracks have piece-wise speed limits for trains, i.e.,
each track (except CSR2-YHR2) is divided into multiple segments, where each segment
has a constant speed limit. The track CSR2-YHR2 has only one segment (itself) with a
speed limit of 60 km/h. Table 8.1 is provided to us by Thales Canada Inc.

In each instance we have an initial feasible timetable with a duration of six hours.
In many railway networks the duration of the off-peak or rush hours is smaller than or
equal to six hours, so a timetable that six hours can be sufficient for practical purpose.
However there can be exceptions, and in such cases this model may not be very efficient.
The number of trains increases as the average headway time decreases. The results of
the numerical study are shown in Table 5.1.

The feasible timetables are provided to us by Thales Canada Inc. We have applied our
optimization model to find the optimal timetable that maximizes the total overlapping
time of the SPSTPs. We see from Table 5.1 that for each instance, our optimization
model produces an optimal timetable with significant increase in the total overlapping
time in comparison with the initial timetable. Such increase in the total overlapping time
would make it possible to save significant amount of electrical energy produced by the
braking trains by transferring it to the accelerating trains via the overhead contact lines.
We can see that, in all of the cases our model has found the optimal timetables very
quickly, the largest runtime being 86.64s. Though the problem is NP-hard, the hardness
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comes from the constraints associated with the objective. The feasibility constraints
are linear. So, if we had looked for a feasible timetable, it would have been a linear
programming problem, which is in complexity class P and can be solved very efficiently.
At the root node the solver relaxes the original problem. So, at the root node we will
have a feasible but possibly suboptimal timetable. Depending on the starting point the
solver may reach the optimal solution after exploring a small number of nodes. The
solution time in this case will be very short, as checking the optimality of such a solution
can be done in polynomial time [41, pages 299-300]. In our numerical study we see that
the number of nodes explored is quite small for every instance, and for five out of nine
instances an optimal solution is found at the root node.

After we get the final timetable, we calculate the total effective energy consumption
by all the trains involved in SPSTPs and compare it with the original timetables. The
effective energy consumption of a train for a trip is defined as the difference between
total energy required to make a trip and the amount of energy that is being supplied by
a braking train during synchronization process. So, the effective energy consumption is
the energy that will be consumed from the electrical substations.

The energy calculation is done using SPSIM [43], and Cubature [23]. SPSIM is a
proprietary software owned by Thales Canada Inc. that calculates the power versus time
graphs of all the active trains for the original and optimal timetables. Cubature is an
open-source Julia package written by Steven G. Johnson, which is used to calculate
the effective area under the power versus time graphs to determine 1) the total energy
required by the trains during the trips, 2) the total transferred regenerative energy during
the SPSTPs, and 3) the effective energy consumption that the difference of the first two
quantities. The effective energy consumption of the optimal timetables in comparison
with the original ones gets reduced for every instance, with smallest reduction being
5.23% and the largest reduction being 18.74%. Increase in the overlapping time results in
energy saving in all cases, but there is a variability in the reduction of the effective energy
consumption, which we explain as follows. The effective energy saving from an SPSTP
depends on parameters such as speed of the involved trains and nature of the energy
profile of the associated acceleration and braking phases. None of these parameters admit
any closed form and incorporating these effects in the model may make it computationally
intractable. As a result, the overlapping time between two trains may be the same, but
the associated energy saving may be completely different.
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Figure 5.2: Second railway network considered for numerical experiment

5.2 Docklands Light Railway

In this subsection, we present results of our numerical study associated with 17 different
problem instances of varying size to a railway network that is a part of the Docklands
Light Railway as shown in Figure 5.2. All the experiments were executed on a Intel
Core i5-3317U 1.70GHz CPU with 4096 MB of RAM running the Windows 8.1 operating
system. We have used IBM ILOG CPLEX Optimization Studio 12.6 academic version
with OPL as our modelling language to perform the optimization.

The railway network has two train-lines denoted by Line 1 and Line 2. There are ten
stations in this network denoted by capitalized words and each station has two opposite
platforms, e.g., BAN is a station which has two opposite platforms: one on Line 1 and
the other on Line 2. The platforms denoted by 1067 and ISP1 are intermediate stopping
points on Line 1. The platforms indicated by BANH and CROH are turn-around points
on Line 1 and Line 2 respectively.

For our numerical study, we have considered 17 different instances with varying head-
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way times and number of trains. As the headway time decreases, the number of trains in
the network increases. In each instance we have an initial feasible timetable with a dura-
tion of six hours. We have applied our optimization model to find the optimal timetable
that maximizes the total overlapping time of the SPSTPs.

We see from Table 5.2 that for each instance, our optimization model produces an
optimal timetable with significant increase in the total overlapping time in comparison
with the initial timetable, with the minimum one being 83.36%. Such increase in the
total overlapping time would make it possible to save significant amount of electrical
energy produced by the braking trains by transferring it to the accelerating trains via
a third rail. A third rail is a semi-continuous conductor of electricity, which is placed
between two opposite tracks. Optimal solutions are obtained for all the instances within
the running time of 1200 s, except two instances instances - instances 6 and 17 (the
optimality gap being 0.97% and 0.31% respectively). In both cases, a 95% optimal
solution (5% optimality gap) is found within less than 2 minutes. If we remove the
time limit, and let the algorithm run indefinitely, then instances 6 and 17 reach optimal
solutions after 2 hours 27 minutes and 3 hours 5 minutes, respectively.

These two instances for which optimality could not be reached within the time limit
can be explained as follows. The CPLEX solver finds the first candidate solution via
general purpose (closed source) heuristics with no guarantee of being close to the optimal
point [21]. Though empirically the CPLEX heuristics tend to perform quite well for most
instances, it can also happen that the first candidate solution is far away from the optimal
solution. In such a case, reaching the optimal solution can take longer and may not even
be reached within the time limit.



Chapter 6

A two-stage linear programming model

In Chapter 4, we presented a robust mixed integer optimization model to increase energy-
efficiency of railway networks. However, as described in Section 4.7, the model suffered
from some drawbacks associated with computational complexity and energy saving strat-
egy. To overcome those drawbacks, in this chapter we propose a novel two-stage linear
optimization model to calculate energy-efficient timetables in electric railway networks.
This chapter is organized as follows. The motivations behind this model is described
in Section 6.1. The first stage of the optimization model is presented in Section 6.2.
This stage minimizes the total energy consumed by the trains. Section 6.3 formulates
the second stage of the optimization problem that additionally maximizes the utilization
of regenerative braking energy. Both the stages of our optimization model are linear
programs, whereas the optimization model in Chapter 4 and the optimization models
in related works are NP-hard. Section 6.4 describes the limitations of the optimization
model.

A flow-chart of the two stages of the optimization model is shown in Figure 6.1.

Figure 6.1: A flow-chart of the two stages of the optimization model

55
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6.1 Motivation behind the model

Motivations behind the two-stage optimization model stem from the limitations of the
robust mixed integer optimization model presented in Chapter 4, and are described as
follows.

1. The robust mixed integer optimization model saves regenerative energy by maxi-
mizing the overlapping time between the temporal blocks associated with the ac-
celeration and braking phases. This is a reasonable strategy, but it may not result
in the the transfer of maximum amount regenerative energy. The transfer of re-
generative energy between two trains depends on the nature of individual electrical
power consumption/regeneration of the trains involved versus time graphs and to
maximize the transfer of regenerative energy between these trains one should aim
to schedule the trains such a way that the overlapped area between the two graphs
is maximized.

2. Besides saving the regenerative energy, another way of increasing energy-efficiency
is to reduce the energy consumption of trains itself. Trains consume most of the
required electrical energy during the acceleration phases of making trips between
platforms. So, one should consider an objective to minimize the energy consumption
associated with these trips.

3. The robust mixed integer optimization model has NP-hard computational com-
plexity. Thus solving the underlying optimization problem will always require an
exponential amount of time in the worst case even with state of the art commer-
cial solvers. This worst-case behavior was indeed exhibited by the numerical study
performed for the robust mixed integer optimization model for timetables spanning
only 6 hours (instances 6 and 17 in Table 5.2). This can a be severe limitation in
practice, as often we are interested in calculating energy-efficient timetables span-
ning a full service period of one day in a short period of time. In such a case, an
optimization model that can be solved in polynomial time can be of great interest.

Motivated by the reasons above we propose the two-stage optimization model in this
chapter. The rest of the chapter is devoted to its description.

6.2 Stage one of the linear programming model

In this section we formulate the first optimization model that minimizes the total en-
ergy consumed by all trains in the railway network. The organization of this section is
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as follows. First, in order to keep the proofs less cluttered, we introduce an equivalent
constraint graph notation. Then we formulate and justify the first optimization problem.
Finally, we show that the nonlinear objective of the initial optimization model can be
approximated as a linear one by applying least-squares. This results in a linear optimiza-
tion problem, which has the interesting property that its optimal solution is attained by
an integral vector.

6.2.1 Converting the initial notation into an equivalent constraint

graph

Each of the constraints described by Equations (3.1)-(3.7) is associated with two event
times (either arrival or departure time of trains at stations), where one of them pre-
cedes another by a time difference dictated by the time window of that constraint. This
observation helps us to convert our initial notation into an equivalent constraint graph
notation which we describe as follows.

Converting the initial notation into an equivalent constraint graph All event
times in the original notation are treated as nodes in the constraint graph, the set of
those nodes is denoted by N̄ and the value associated with a node i ∈ N̄ is denoted by
xi, which represents the arrival or departure time of some train from a platform.

• Nodes of the constraint graph: Consider any two nodes in the constraint graph;
if there exists a constraint between the two in the original notation, then in the
constraint graph we create a directed arc between them, the start node being the
first event and the end node being the later one. The set of arcs thus created in
the constraint graph is denoted by Ā. Note that there cannot be more than one
arc between two nodes in the constraint graph.

• Arcs of the constraint graph: With each arc (i, j) ∈ Ā we associate a time window
[lij, uij] with their values determined from the Equations (3.1)-(3.7). So, each arc
(i, j) ∈ Ā corresponds to a constraint of the form lij ≤ xj − xi ≤ uij. The set of all
arcs associated with trip time constraints is expressed by Ātrip ⊂ Ā.

Example Figure 6.2 represents a very simple network with 7 stations represented by
black dots and 2 trains represented by the directed rectangles. The pointed edge of
the symbol indicates the direction. In this network, T = {1, 2} and and the stations
are enumerated as {1, 2, 3, 4, 5, 6, 7}. There are two train lines as shown in the figure.
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Figure 6.2: Example of a very simple railway network.

It should be noted that nodes represent stations, not platfrms. Nodes 2 and 3 rep-
resent interchange stations, where there are two platforms for both lines on different
levels. So, the event times at node 2 and node 3 are associated with different plat-
forms and are differentiated using black and magenta colors. The set of tracks vis-
ited by train 1 is A1 = {(1, 2), (2, 3), (3, 4)}, and the set of tracks visited by train 2 is
A2 = {(5, 2), (2, 6), (6, 3), (3, 7)}. The set of all tracks is then A = A1 ∪ A2. The event
times corresponding to train 1 and train 2 are shown in black and magenta colours re-
spectively in Figure 6.2. Applying the conversion process described above we can convert
the initial notation in Figure 6.2 to the constraint graph shown in Figure 6.3. .

6.2.2 Description of the first stage of the linear programming

model

Recall that, a train consumes most of its required electrical energy during the acceleration
phase of making a trip from an origin platform to a destination platform (Section 1.1).
Trip time constraints, described in Section 3.3.1, play the most important role in energy
consumption and regenerative energy production of trains. Once the trip time for a
trip is fixed, an energy optimal speed profile can be calculated efficiently by existing
software [43], [20, page 285], such as e.g., Thales Train Kinetics, Dynamics and Control
(TKDC) Simulator in our case. The TKDC simulator assumes maximum accelerating
- speed holding - coasting - maximum braking strategy for calculation of speed profile.
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Figure 6.3: The constraint graph for the railway network of Figure 6.2.

Theoretically this is the optimal speed profile according to the monograph [20]. For
calculation of the optimal speed profile of a train while making a trip, we refer the
interested reader to the highly cited papers [22, 18, 19, 25, 31]. The electrical power
consumption and regeneration of a train on a track is determined by its speed profile, so
the optimal speed profile also gives the power versus time graph (power graph in short) for
that trip. However, in the total railway service period there are many active trains, whose
movements are coupled by the associated constraints. So, finding the energy-minimal trip
time for a single trip in an isolated manner can result in a infeasible timetable. Consider
an arc (i, j) ∈ Ātrip in the constraint graph, associated with some trip time constraint.
Let us denote the energy consumption function for that trip fij : R++ → R++ with
argument (xj − xi). The first optimization problem with the objective to minimize the
total energy consumption of the trains can be written as:

minimize
∑

(i,j)∈Ātrip
fij(xj − xi)

subject to lij ≤ xj − xi ≤ uij, ∀(i, j) ∈ Ā
0 ≤ xi ≤ m, ∀i ∈ N̄ ,

(6.1)

where the decision vector is (xi)i∈N̄ ∈ R|N̄ |.
The exact analytical form of every component of the objective function, i.e., fij(xj −

xi) for (i, j) ∈ Ātrip is not known and may be intractable [19]. However, irrespective of the
exact analytical form, the energy function can be shown to be monotonically decreasing
in trip time, i.e., it is non-increasing with the increase in trip time, if the optimal speed
profile is followed [35]. Even when a train is manually driven with possibly suboptimal
driving strategies, the average energy consumption of the train is found empirically to
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be monotonically decreasing in the trip time [38].
Also, the energy function is relatively easy to measure in practice [20, Section 1.5].

For any (i, j) ∈ Ātrip, we denote the measured trip times (x
(1)
j − x

(1)
i ), . . . , (x

(p)
j − x

(p)
i )

and the corresponding energy consumption data f (1)
ij , . . . , f

(p)
ij .

In any subway system, the amount by which the trip time is allowed to vary in
Equations (3.1) and (3.2) is typically on the order of seconds [29], which motivates us to
make the following assumption.

Assumption 6.1. The amount by which the trip time is allowed to vary is on the order
of seconds, i.e., for any the trip time window is on the order of seconds.

The monotonically decreasing nature of the energy function together with Assumption
6.1 allows us to approximate the energy function fij(xj−xi) as an affine function. Recall
that in practice, we can measure the energy f (1)

ij , . . . , f
(p)
ij and associated trip times (x

(1)
j −

x
(1)
i ), . . . , (x

(p)
j −x

(p)
i ), which is obtainable easily with present technology [20, Section 1.5].

Now we want to formulate an optimization problem which will provide us with the
best possible affine approximation of the energy function fij(xj − xi). We do so by
applying least-squares and fit a straight line through measured energy versus trip time
data. We seek an affine function cij(xj − xi) + bij = (xj − xi, 1)T (cij, bij) where we want
to determine cij and bij.

The affine function approximates the measured energy in the least-squares sense as
follows:

(cij, bij) =argmin(c̃ij ,b̃ij)

p∑
k=1

(
c̃ij(x

(k)
j − x

(k)
i ) + b̃ij − f (k)

ij

)2

=argmin(c̃ij ,b̃ij)

∥∥∥∥∥∥∥∥


(x
(1)
j − x

(1)
i , 1)T

...
(x

(p)
j − x

(p)
i , 1)T


[
c̃ij

b̃ij

]
−


f

(1)
ij
...
f

(p)
ij


∥∥∥∥∥∥∥∥

2

2

(6.2)

The problem above is an unconstrained optimization problem with convex quadratic
differentiable objective. So, as described in Section 2.3.3, it can be solved by taking the
gradient with respect to (c̃ij, b̃ij), setting the result equal to zero vector and then solving
for (c̃ij, b̃ij). This yields the following closed form solution:

[
cij

bij

]
=




(x
(1)
j − x

(1)
i , 1)T

...
(x

(p)
j − x

(p)
i , 1)T


T 

(x
(1)
j − x

(1)
i , 1)T

...
(x

(p)
j − x

(p)
i , 1)T



−1 

(x
(1)
j − x

(1)
i , 1)T

...
(x

(p)
j − x

(p)
i , 1)T


T 

f
(1)
ij
...
f

(p)
ij

 (6.3)
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Using Equation (6.3), we can approximate the nonlinear objective of the optimization
problem (6.1) as an affine one:

∑
(i,j)∈Ātrip

cij(xi−xj)+bij. A measurement of the quality
of such fittings is given by the coefficient of determination, which can vary between 0 to
1, with 0 being the worst and 1 being the best [24, page 518]. In our numerical studies
the mean coefficient of determination of the energy fittings over all the different trips of
all the trains is found to be 0.9483 with a standard deviation of 0.05, which justifies our
approach. We can also discard the bijs from the objective, as it has no impact on the
minimizer. Thus we arrive at the following linear optimization problem to minimize the
total energy consumption of the trains:

minimize
∑

(i,j)∈Ātrip
cij(xj − xi)

subject to lij ≤ xj − xi ≤ uij, ∀(i, j) ∈ Ā
0 ≤ xi ≤ m, ∀i ∈ N̄ .

(6.4)

Note that, we have not used the same cost-time curve for all the trips. Each of
the constituent parts cij(xj − xi) of the objective function

∑
(i,j)∈Ātrip

cij(xj − xi) in
Problem (12) represents approximated affine function for each of the trips considered
in the optimization problem. If optimal speed profiles for the trips are available to the
railway management, from the first optimization model the optimal trip times for those
optimal speed profiles can be found. If available speed profiles are suboptimal, then the
first optimization model would still produce an energy-efficient timetable with best trip
times subject to the available speed profiles.

An important property of this optimization model is that the polyhedron associated
with optimization problem has only integer vertices, so the optimal value is attained by
an integral vector. A necessary and sufficient condition of integrality of the vertices of
a polyhedron is given by the following theorem [40, page 269, Theorem 19.3], which we
will use to prove the subsequent proposition.

Theorem 6.1. Let A be a matrix with entries 0,+1, or −1. For all integral vectors
a, b, c, d the polyhedron {x ∈ Rn | c � x � d, a � Ax � b} has only integral vertices if
and only if for each nonempty collection of columns of A, denoted by C, there exist two
subsets , C1 and C2 such that C1 ∪ C2 = C,C1 ∩ C2 = ∅, and the sum of the columns in
C1 minus the sum of the columns in C2 is a vector with entries 0, 1 and −1.

Proposition 6.2. The optimization problem (6.4) has an integral optimal solution.

Proof. We write the problem (6.4) in vector form. We construct a cost vector c, such
that a component of that vector is cij if it is associated with a trip time constraint
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in the original notation, and zero otherwise. Construct integral vectors l = (lij)(i,j)∈Ā,
u = (uij)(i,j)∈Ā and matrix A ∈ {−1, 0, 1}|Ā|×|N̄ | such that the (k, i)th entry of the matrix
A, denoted by aki, is associated with the kth hyperarc and ith node of the constraint
graph as follows:

aki =


1 if node i is the end node of hyperarc k,

−1 if node i is the start node of hyperarc k,

0 otherwise.

So, the vector form of the optimization problem (6.4) is:

minimize cTx

subject to l � Ax � u,

0 � x � m1.

(6.5)

Consider any nonempty collection of columns of A denoted by C. Take C1 = C and
C2 = ∅. Then the sum of the columns in C1 minus the sum of the columns in C2 will
be a vector with entries 0, 1 and −1, because in A there cannot exist more than one row
corresponding to an arc between two nodes of the constraint graph and each such row
has exactly two nonzero entries, a +1 and a −1. So, by Theorem 6.1 the polyhedron
{x ∈ R|N̄ | : l � Ax � u, 0 � x � m1} has only integral vertices and optimizing the linear
objective in problem (6.5) over this polyhedron will result in an integral solution.

After solving the linear programming problem (6.4), we obtain an integral timetable,
which we will call the energy minimizing timetable (EMT). We denote the optimal
decision vector of this timetable by x̄ in the constraint graph notation and

(
(āti, d̄

t
i)i∈N

)
t∈T

in the original notation.

6.3 Stage two of the linear programming model

In this section we modify the trip time constraints such that the total energy consumption
of the final timetable is kept at the same minimum as the EMT. Then, we describe our
optimization strategy aimed to maximize the utilization of regenerative energy of braking
trains, and we present the second optimization model.
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6.3.1 Keeping the total energy consumption at minimum

In any feasible timetable, if the trip times are kept to be the same as the ones obtained
from the EMT, then the energy optimal speed profiles for all trains will be the same. As
a result, the energy consumption associated with that timetable will remain at the same
minimum as found in the EMT. So, in the second optimization problem, instead of using
the trip time constraint, for every trip we fix the trip time to the value in the EMT, i.e.,

∀t ∈ T , ∀(i, j) ∈ At, atj − dti = ātj − d̄ti, (6.6)

and

∀(i, j) ∈ ϕ, ∀(t, t′) ∈ Bij, at
′

j − dti = āt
′

j − d̄ti. (6.7)

For all other constraints, bounds are allowed to vary as described by Equations (3.3)-
(3.7). As a consequence of fixing all trip times, the power graph of every trip made by
any train becomes known to us, since it depends on the corresponding optimal speed
profile calculated in real-time by existing software [43], [20, page 285].

6.3.2 Maximizing the utilization of regenerative energy of brak-

ing trains

In this subsection we describe our strategy to maximize the utilization of the regenerative
energy produced by the braking trains. Strategies based on transfer of regenerative brak-
ing energy back to the electrical grid requires specialized technology such as reversible
electrical substations [15]. A strategy based on storing is not feasible with present tech-
nology, because storage options such as super-capacitors, fly-wheels, etc., have drastic
discharge rates besides being too expensive [5, page 66], [13, page 92] (see Section 4.2 for
details). As mentioned in Chapter 4, a better strategy that can be used with existing
technology [10] is to transfer the regenerative energy of a braking train to a nearby and
simultaneously accelerating train, if both of them operate under the same electrical sub-
station. We call such pairs of trains suitable train pairs. So our objective is to maximize
the total overlapped area between the graphs of power consumption and regeneration of
all suitable train pairs. To model this mathematically, we are faced with the following
tasks:

• Define suitable train pairs, which have already been described in details in Section
4.2.,
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Figure 6.4: Applying 1
e
heuristic to power graphs

• Provide a tractable description of the overlapped area between power graphs of
such a pair, which is described in the next subsection.

6.3.3 Description of the overlapped area between power graphs

The power graph during accelerating and braking is highly nonlinear in nature with no
analytic form, as shown in Figure 6.4. So, maximizing the exact overlapped area will
lead to an intractable optimization problem. However, as discussed in Section 2.4, the
existence of dominant peaks with sharp falls in the power graph allows us to apply 1

e

heuristic to approximate the power graphs as rectangles. The 1
e
heuristic is applied as

follows (see Figure 6.4). Recall that, the height of the rectangle is the maximum power,
and the width is the interval with extreme points corresponding to power dropped at
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1/e of the maximum. For the sharp drop from the peak, such rectangles are very robust
approximations to the original power graph containing the most concentrated part of the
energy, e.g., if the drop were exponential, then the energy contained by the rectangle
would have been exactly equal to that of the original curve [33, page 33-34]. After
converting both the power graphs to rectangles, maximizing the overlapped area under
those rectangles is equivalent to aligning the midpoint of the width of the rectangles;
we call such a midpoint regenerative or consumptive alignment point. These
alignment points act as virtual peaks of the approximated power graphs. As shown
in Figure 6.4, for a train t in its braking phase prior to its arrival at platform i, the
relative distance of ati from the regenerative alignment point is denoted by Ot

i, while
during acceleration the relative distance of the consumptive alignment point from dti is
denoted by Mt

j. Note that both relative distances are known parameters for the current
optimization problem.

6.3.4 Description of the second stage of the linear programming

model

Consider an element (i, j, t,
⇀
t ) ∈

⇀

E . To ensure the transfer of maximum possible regen-
erative energy from the braking train

⇀
t to the accelerating train t, we aim to align both

their alignment points such that dti+ Mt
i= a

⇀
t
j − O

⇀
t
j , or keep them as close as possible

otherwise. Similarly, for any (i, j, t,
↼
t ) ∈

↼

E , our objective is d
↼
t
j + M

↼
t
j = ati − Ot

i , or as
close as possible. Let a decision vector y be defined as

y =
((
dti+ Mt

i −a
⇀
t
j + O

⇀
t
j

)
(i,j,t,

⇀
t )∈

⇀
E
,
(
d

↼
t
j + M

↼
t
j −ati + Ot

i

)
(i,j,t,

↼
t )∈

↼
E

)
. (6.8)

Then our goal comprises of two parts: 1) maximize the number of zero components of y
which corresponds to minimizing card(y), and 2) keep the nonzero components as close
to zero as possible which corresponds to minimizing the `1 norm of y, ‖y‖1. Combining
these two we can write the exact optimization problem as follows:

minimize card(y) + γ‖y‖1

subject to
Equations(3.3)− (3.7), (6.6), (6.7), (6.8),
0 ≤ ati ≤ m, 0 ≤ dti ≤ m, ∀i ∈ N t, ∀t ∈ T ,

(6.9)

where γ is a positive weight, and decision variables are a, d and y. The objective function
is nonconvex as shown next. Take the convex combination of the vectors 2e1/γ and 0
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with convex coefficients 1/2. Then,

card

(
e1

γ

)
+γ

∥∥∥∥e1

γ

∥∥∥∥
1

= 2 >
1

2

(
card

(
2e1

γ

)
+ γ

∥∥∥∥2e1

γ

∥∥∥∥
1

)
+

1

2
(card (0) + γ ‖0‖1) = 1.5,

and thus violates definition of a convex function. As a result, problem (6.9) is a non-
convex problem. Note that if we remove the cardinality part from the objective, then
it reduces to a convex optimization problem because the constraints are affine and the
objective is the `1 norm of an affine transformation of the decision variables [8, pages
72, 79, 136-137]. Such problems are often called convex-cardinality problem and are of
NP-hard computational complexity in general [9]. An effective yet tractable numerical
scheme to achieve a low-cardinality solution in a convex-cardinality problem is the `1

norm heuristic, where card(y) is replaced by ‖y‖1, thus converting problem (6.9) into
a convex optimization problem. This is described by problem (6.10) below. The `1

norm heuristic is supported by extensive numerical evidence with successful applications
to many fields, e.g., robust estimation in statistics, support vector machine in machine
learning, total variation reconstruction in signal processing, compressed sensing etc. In
the next section we show that in our problem too, the `1 norm heuristic produces excellent
results. Intuitively, the `1 norm heuristic works well, because it encourages sparsity in its
arguments by incentivizing exact alignment between regenerative alignment points with
the associated consumptive ones [8, pages 300-301]. We provide a theoretical justification
for the use of `1 norm in our case as follows.

Proposition 6.3. The convex optimization problem described by

minimize ‖y‖1

subject to
Equations(3.3)− (3.7), (6.6), (6.7), (6.8),
0 ≤ ati ≤ m, 0 ≤ dti ≤ m, ∀i ∈ N t, ∀t ∈ T ,

(6.10)

is the best convex approximation of the nonconvex problem (6.9) from below.

Proof. Both problems (6.10) and (6.9) have the same constraint set, so we need to focus
on the objective only. Recall from Section 2.3.2 that the best convex approximation of
a nonconvex function f : C → R (where C is any set) from below is given by its convex
envelope envf on C. The function envf is the largest convex function that is an under
estimator of f on C, i.e.,

envf = sup{f̃ : C → R | f̃ is convex and f̃ ≤ f},



Chapter 6. A two-stage linear programming model 67

where sup stands for the supremum, i.e., the least upper bound of the set. The definition
implies, epi env f = conv epi f .

From Equation (6.8) we see that y is an affine transformation of a and d, and from
the last constraints of problem (6.9) we see that both a and d are upper bounded by m,
i.e., ‖a‖∞ ≤ m and ‖d‖∞ ≤ m. So there exists a positive number P such that ‖y‖∞ ≤ P .
The domain of y is bounded in an `∞ ball with radius P . So, as discussed in Section
2.3.2, we have env card (y) = 1

P
‖y‖1. As a result, the best convex approximation of the

objective from below is 1
P
‖y‖1 + γ‖y‖1 = ( 1

P
+ γ)‖y‖1. As the coefficient ( 1

P
+ γ) is a

constant for a particular optimization problem, it can be omitted, and thus we arrive at
the claim.

Using the epigraph approach (See Section 2.3.6), we can transform the convex problem
(6.10) into a linear program as follows. For each (i, j, t,

⇀
t ) ∈

⇀

E and each (i, j, t,
↼
t ) ∈

↼

E ,
we introduce new decision variables θt

⇀
t

ij and θt
↼
t

ij respectively, such that θt
⇀
t

ij ≥ |dti+ Mt
i

−a
⇀
t
j + O

⇀
t
j | and θt

↼
t

ij ≥ |d
↼
t
j + M

↼
t
j −ati + Ot

i|. Then, the convex optimization problem can
be converted into the following linear problem:

minimize
∑

(i,j,t,
⇀
t )∈

⇀
E
θt

⇀
t

ij +
∑

(i,j,t,
↼
t )∈

↼
E
θt

↼
t

ij

subject to

θt
⇀
t

ij ≥ dti+ Mt
i −a

⇀
t
j + O

⇀
t
j , ∀(i, j, t,

⇀
t ) ∈

⇀

E
θt

⇀
t

ij ≥ −dti− Mt
i +a

⇀
t
j − O

⇀
t
j , ∀(i, j, t,

⇀
t ) ∈

⇀

E
θt

↼
t

ij ≥ d
↼
t
j + M

↼
t
j −ati + Ot

i, ∀(i, j, t,
↼
t ) ∈

↼

E
θt

↼
t

ij ≥ −d
↼
t
j − M

↼
t
j +ati − Ot

i, (i, j, t,
↼
t ) ∈

↼

E
Equations (3.3)− (3.7), (6.6), (6.7),
0 ≤ ati ≤ m, 0 ≤ dti ≤ m ∀t ∈ T , ∀i ∈ N t,

(6.11)

where the decision variables are ati, dti, θt
⇀
t

ij and θt
↼
t

ij .

6.4 Limitations of the optimization model

The model presented in this chapter does not suffer from the drawbacks of the robust
mixed integer programming model presented in Chapter 4. However, like any optimiza-
tion model, this model too has some limitations, which stem from the assumptions and
approximations we made to construct the model. In this section, we discuss the limi-
tations of the model and possible workarounds when available. The limitations are as
follows.
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• We have assumed that the amount by which the trip time is allowed to vary is
on the order of seconds (Assumption 6.1). Though this is true for most of the
subway systems, there are exceptions where this assumption may not hold. For
example, when a trip between two cities is considered (especially involving different
countries), the trip is on the order of hours with the acceptable trip time bound
often being on the order of 5-10 minutes and even more in some cases. In such a
scenario, an affine approximation of the energy with respect to trip time would not
be very efficient any more, and our model would not be suitable for such a case.

• In Section 6.3 we have have applied two different heuristics to arrive at a convex
optimization problem. At first we have used 1

e
heuristic to come up with a tractable

description of the overlapped area between power graphs, and then we have used
the `1 norm heuristic to approximate a nonconvex objective function with its convex
envelope. So, it is quite likely that the timetable obtained by solving the convex
optimization problem (Problem 6.11) would have a worse objective value compared
to the original intractable optimization problem. For this reason our model is
energy-efficient, but not necessarily energy-optimal.

• The model does not directly address the case of significant delay. However, we have
considered two indirect ways of dealing with it in practice.

– In any automatic train supervision system, which has the responsibility of
implementing the timetable, dwell and velocity regulation are performed to
maintain trains on their proper time. If there is a deviation from the optimal
timetable because of some delay, the ATS performs regulation to move delayed
trains back to the planned optimal timetable timetable. Thus the system will
typically return to a normal state in less than half an hour after a delay of one
minute.

– Another way is incorporating the change into the system (due to the delay)
as an input data and solving a new but shorter optimization problem with
a time horizon of 1-2 hours which can be done in real time using our model.
While the shorter model is being implemented we solve the larger optimization
problem spanning the rest of the day.



Chapter 7

Numerical experiments for the
two-stage LP model

In this chapter we apply our model to different problem instances spanning full service
period of one day to service PES2-SFM2 of line 8 of Shanghai Metro network (see Figure
5.1). Detailed description on this railway network has been provided in Section 5.1.

7.1 Shanghai Metro network

The numerical study was executed on a Intel Core i7-46400 CPU with 8 GB RAM running
Windows 8.1 Pro operating system. For modelling the problem, we have used JuMP - an
open source algebraic modelling language embedded in programming language Julia

[32]. Within our JuMP code we have called academic version of Gurobi Optimizer 6.0 as
the solver. We have implemented an interior point algorithm because of the underlying
sparsity in the data structure. As mentioned before, a measure of the quality of affine
fittings using least-squares approach is given by the coefficient of determination, which
can vary between 0 to 1, with 0 being the worst and 1 being the best [34, page 518].
In our numerical study, the average coefficient of determination of the affine fittings for
energy versus trip times over all different trips and all trains is found to be 0.9483 with
a standard deviation of 0.05, which justifies our approach.

The duration of the timetables is eighteen hours which is the full service period of
the railway network. We have considered eleven different instances with varying average
headway times and number of trains. The number of trains increases as the average head-
way time decreases, where the relation between them can be determined from Equation
3.9. The results of the numerical study are shown in Table 7.1.

We can see that, in all of the cases our model has found the optimal timetables very
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quickly, the largest runtime being 12.58s. To the best of our knowledge, this model is
the only one to calculate energy-efficient railway timetable spanning an entire day, the
next largest being 6 hours only [11] with a much larger computation time for smaller
sized problems. After we get the final timetable, we calculate the total effective energy
consumption by all trains involved in SPSTPs and compare it with the original timetables.
The effective energy consumption of a train during a trip is defined as the difference
between the total energy required to make a trip and the amount of energy that is being
supplied by a braking train during synchronization process. So, the effective energy
consumption is the energy that will be consumed from the electrical substations.

The original timetables, which we compare the final timetables with, are provided by
Thales Canada Inc. It should be noted that, the number of trains T is fixed for each of
the instances. The energy calculation is done using SPSIM, which is a proprietary software
owned by Thales Canada Inc [43], and Cubature, which is an open-source Julia pack-
age written by Steven G. Johnson that uses an adaptive algorithm for the approximate
calculation of multiple integrals[23]. SPSIM calculates the power versus time graphs of all
the active trains for the original and optimal timetables. Cubature is used to calculate
the effective area under the power versus time graphs to determine 1) the total energy
required by the trains during the trips, 2) the total transferred regenerative energy during
the SPSTPs, and 3) the effective energy consumption as the difference of the first two
quantities. The effective energy consumption of the optimal timetables in comparison
with the original ones is reduced quite significantly - even in the worst case, the reduction
in effective energy consumption is 19.27%, with the best case corresponding to 21.61%.

7.2 Comparison with the robust mixed integer pro-

gramming model

Now we compare the performance of the two-stage linear model with the robust mixed
integer programming model.

1. Reduction in effective energy consumption. We can clearly see from Tables 7.1
and 5.1 that the the two-stage model reduces the effective energy consumption
more than the robust mixed integer programming model. The mean reductions in
energy consumption for the two stage model and the robust mixed integer program-
ming model are 20.47% and 11.2%, respectively. The two-stage model is also more
consistent than the robust model in reducing energy consumption. The standard
deviation in effective energy reduction is 0.65 for the two-stage model and is 4.72
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Figure 7.1: The integration architecture of the two stage model with Thales timetable
compiler

for the robust mixed integer programming model. This significant difference in
the performance can be attributed to the difference in modeling. First, unlike the
two-stage model, the robust mixed integer optimization model does not attempt
to reduce the energy consumed by the trains. Second, the regenerative energy sav-
ing strategy is more realistic in the two-stage model. The numerical experiments
support that the strategy to maximize the overlapping time between the temporal
blocks may not result in the the transfer of maximum amount regenerative energy.

2. CPU time. From Tables 5.1, 5.2 and 7.1, we can see that in terms of CPU time the
two-stage model is significantly faster that mixed integer programming model. In
fact, for the same railway network the two stage model calculates 18 hours timeta-
bles in far less CPU time (max CPU time less than 13s) than the mixed integer
programming model which calculates timetables spanning only 6 hours (max CPU
time 86.64s). This comes as no surprise, as the two stage model is a linear program
having polynomial time complexity, whether the mixed integer programming model
is of NP−hard complexity.

From the above discussions, we arrive at the conclusion that the two-stage optimization
model is significantly better than the robust mixed integer optimization model.

7.3 Integration with Thales timetable compiler

In this section we describe how the codes for the two-stage model has been integrated
with Thales timetable compiler. The overall integration architecture is illustrated in
Figure 7.1. The descriptions of various blocks in the figure are given below.
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• Thales timetable compiler

– Timetable data. This block contains the required data for solving the opti-
mization problem. The data structure in this block is based on tracks, and
holds more data than necessary. The data structure in the Julia code is based
on suitable pairs and platforms.

– Optimization class. The optimization class converts the data structure in the
timetable data block in a form compatible for the optimization algorithm.

– CSCPP class. The CSCPP class maintains the communication between the
Thales timetable compiler and the Julia code. It inputs the data into the Julia
code and collects the optimized timetable.

• Julia code

– Type definitions. This part defines the data structures necessary to describe
a railway network.

– Utility functions. This part contains necessary functions that are required to
run the optimization algorithm, and maintains the communication between
the two stages of the optimization model.

– Optimization function. This part calculates the energy efficient timetable and
sends the result to the CSCPP class.



Chapter 8

Conclusion and future works

In this thesis, we have proposed two optimization models to calculate energy-efficient
timetables in railway networks. The first optimization model is a robust mixed integer
optimization model. It provides accurate and relatively tractable modeling of the opti-
mization problem in order to maximize the total overlapping time between suitable train
pairs. The second optimization model is proposed to overcome the limitations of the first
model. Unlike the first model and other relevant works, the second model 1) is more
realistic in addressing the problem of increasing energy-efficiency of railway timetables,
and yet 2) has a polynomial time computational complexity. In practice, the second
model has proven to be very efficient in calculating energy-efficient timetables and has
been integrated with an industrial railway timetable compiler.

8.1 Conclusion

After providing the necessary background for the thesis in Chapter 2, we modeled all
the constraints needed by a feasible railway timetable in Chapter 3, including safety
regulations, service levels and restrictions that consider the operational feasibility of the
railway management. The constraints form the feasible set for the optimization models
described in the later chapters.

In Chapter 4 we presented a robust mixed integer optimization model to utilize regen-
erative braking energy produced by trains in a railway network. Using this model saves
regenerative energy of braking trains by transferring it to suitable accelerating trains in
need of energy. We modeled the objective function of the optimization problem using
hypograph approach and interval algebra.

Then in Chapter 5, we applied the optimization model presented in Chapter 4 to
different instances of two railway networks (Shanghai Metro Network and Dockland Light
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Railway) for time horizon spanning six hours. Compared to the original timetables, the
overlapping time increases significantly in the optimal timetables. In the first railway
network we have access to relevant energy information to calculate the relative reduction
in effective energy consumption and we find that there is significant increase in utilization
of regenerative energy for every instance compared to the existing timetables.

However, the robust mixed integer programming model has some limitations associ-
ated with NP−hard computational complexity, maximization in overlapping time not
being equal to maximization in regenerative energy transfer and not considering mini-
mizing the energy expenditure by moving trains. To overcome the limitations of the first
model, in Chapter 6 we proposed a novel two-stage linear optimization model to calculate
energy-efficient timetables in electric railway networks. Both stages of this optimization
model are linear programs, hence solvable in polynomial time.

Application of the two stage model to different instances of a real life railway network
spanning a full service period of 18 hours with thousands of active trains shows that
the model finds an optimal timetable very quickly with significant reduction in effective
energy consumption. A comparison between the two models indicate that the two-stage
optimization model is significantly better than the robust mixed integer optimization
model.

8.2 Future works

Now we discuss possible future works.

• One of the assumptions of the two stage model is that the amount by which the
trip time is allowed to vary is on the order of seconds. There are exceptions where
this assumption may not hold. For example, when a trip between two cities is
considered, an affine approximation of the energy with respect to trip time is not
very efficient. In such a case, a non-affine but polynomial approximation of the
energy can still be found. Replacing the affine energy functions with polynomials
will convert the first-stage of the optimization problem into a polynomial optimiza-
tion problem. Solving such polynomial optimization problems can be of significant
interest.

• In the second stage of the optimization model we used 1
e
heuristic to come up with

a tractable description of the overlapped area between power graphs, and then we
used the `1 norm heuristic to approximate a nonconvex objective function with
its convex envelope. A natural research direction is to investigate how to model



Chapter 8. Conclusion and future works 76

the optimization problem without these two layers of approximations, which would
provide an energy-optimal timetable, rather than an energy-efficient one.

• When a significant delay occurs in the railway network, the models provide indirect
ways of dealing with it without any direct resolution. An interesting research
direction can be how to model a delay resilient optimization model to calculate
energy-efficient timetables.



Appendix

Speed limit for the railway network considered

Table 8.1: Speed limit for line 8 of Shanghai Metro net-
work

Origin-Destination Start (m) End (m) Speed limit (km/h)
CSR1-YSS1 0.0 143.5 60

143.5 1004.6 70
1004.6 1138.2 60

CSR2-YHR2 0.0 910.0 60

GRW1-LXM1 0.0 153.3 60
153.3 870.1 70
870.1 1006.9 60

GRW2-PES2 0.0 173.1 60
173.1 636.4 70
636.4 769.5 60

JYR1-LZV1 0.0 1366.7 60
1366.7 2220.6 65
2220.6 2357.3 60

JYR2-YSS2 0.0 143.4 60
143.4 1388.9 70
1388.9 1522.3 60

JYS1-LHS1 0.0 140.0 60
140.0 829.2 75
829.2 1202.3 60

JYS2-PJT2 0.0 140.0 60
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140.0 371.1 70
371.1 1081.9 75
1081.9 1249.8 70
1249.8 1386.2 60

LHR1-PJT1 0.0 140.1 60
140.1 766.2 70
766.2 1623.4 75
1623.4 1805.9 70
1805.9 2374.4 75
2374.4 2487.8 70
2487.8 2624.3 60

LHR2-LZV2 0.0 139.8 60
139.8 2457.3 70
2457.3 2594.1 60

LHS1-SFM1 0.0 140.0 60
140.0 1220.1 70
1220.1 1357.4 60

LHS2-JYS2 0.0 186.7 60
186.7 853.8 75
853.8 1064.4 70
1064.4 1200.8 60

LJB1-SXZ1 0.0 140.1 60
140.1 1027.4 70
1027.4 1167.2 60

LJB2-LXM2 0.0 140.1 60
140.1 693.3 70
693.3 830.2 60

LXM1-LJB1 0.0 140.0 60
140.0 689.3 70
689.3 826.1 60

LXM2-GRW2 0.0 140.0 60
140.0 855.5 70
855.5 1005.2 60
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LZV1-LHR1 0.0 140.1 60
140.1 1901.1 70
1901.1 2199.1 75
2199.1 2456.3 70
2456.3 2592.8 60

LZV2-JYR2 0.0 143.3 60
143.3 1007.8 65
1007.8 2338.1 60

PES1-GRW1 0.0 140.0 60
140.0 561.7 70
561.7 761.5 60

PJT1-JYS1 0.0 143.3 60
143.3 374.6 70
374.6 1089.8 75
1089.8 1250.2 70
1250.2 1386.7 60

PJT2-LHR2 0.0 143.4 60
143.4 355.8 70
355.8 829.3 75
829.3 1039.2 70
1039.2 1858.3 75
1858.3 2488.9 70
2488.9 2622.1 60

SFM2-LHS2 0.0 140.3 60
140.3 373.0 70
373.0 742.3 75
742.3 1225.1 70
1225.1 1358.3 60

SXZ1-ZJD1 0.0 140.1 60
140.1 647.2 65
647.2 1699.3 70
1699.3 2039.3 60

SXZ2-LJB2 0.0 160.1 60
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160.1 1027.5 70
1027.5 1164.2 60

YHR1-CSR1 0.0 143.4 60
143.4 773.7 70
773.7 910.3 60

YHR2-ZJD2 0.0 140.0 60
140.0 601.3 70
601.3 738.0 60

YSS1-JYR1 0.0 140.2 60
140.2 664.7 70
664.7 987.7 75
987.7 1389.2 70
1389.2 1525.9 60

YSS2-CSR2 0.0 430.4 60
430.4 1014.8 70
1014.8 1151.6 54

ZJD1-YHR1 0.0 140.1 60
140.1 605.9 70
605.9 742.5 60

ZJD2-SXZ2 0.0 353.8 60
353.8 1393.7 70
1393.7 1910.0 65
1910.0 2043.3 60
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