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Abstract— In this paper, we consider a variant of the well
known minimum cost flow problem in a directed network
with nonconvex costs and integer flows. We formulate the
problem in a multi-player setup, whereby we associate one
player with each arc of the network. The goal of each
player is to minimize its nonconvex cost that depends on
the integer flow through the arc subject to the network flow
constraints. In this multi-player setup, a Pareto optimal
point is justified to be an efficient solution concept. We
propose an algorithm to compute a Pareto optimal point.
We show that, although the problem in its original form
has coupled constraints binding every player, there exists
an equivalent variable transformation that decouples the
optimization problems for a number of players. Each of
the decoupled players can solve its optimization problem
in a decentralized manner. We use the solutions of those
decoupled players to transform the optimization problems
for the rest of the players using consensus constraints. Then
we present algorithms based on algebraic geometry to find
a Pareto optimal point.

I. INTRODUCTION

A network flow problem is a special class of optimization
problems associated with some underlying directed net-
work. Network flow problems have a remarkable range
of applications [1]–[5]. The minimum cost flow problem
is one of the most fundamental network flow problems
[1]. It is associated with the flow of some commodity in
a directed graph, where each arc of the network incurs
a cost for the flow of that product, while satisfying
the flow preservation laws in that network. The flow
is often taken to be integer [1, Section 14.1], and can
represent number of products, vehicles, data packets in
communication networks etc. In many applications the
cost function is nonconvex [6]–[10]. Nonconvex mini-
mum cost flow problems have NP-hard computational
complexity [11]. Even when the cost function is convex,
a polynomial time algorithm does not exist unless the
cost function is of very specific structure [1].

In this paper, we consider an extension of the minimum
(nonconvex) cost flow problem with integer flows to a
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multi-player setup as follows. With each arc of the net-
work graph we associate one player. Each of the players
is trying to minimize its nonconvex cost function, subject
to the network flow constraints. Our goal is to seek a
socially optimal solution in this multi-player problem.

A vector optimal solution that minimizes all the objec-
tives simultaneously is unlikely to exist [12, page 176].
The celebrated Nash equilibrium [13] is also not very
efficient, because the constraint set of the problem has
equality constraints, thus making any feasible point a
Nash equilibrium. Also, a Nash equilibrium does not
necessarily correspond to a socially optimal outcome,
as posteriori some of the players may decide to deviate
from the Nash equilibrium in order to reduce their
costs even more at the expense of the rest of the
players’ expense [14, Section 2.6.4]. In this paper, we
rather consider seeking a Pareto optimal point. A Pareto
optimal point is a socially optimal point which is feasible
and where none of the players can improve their cost
functions without strictly worsening some other player
[12, Section 4.7.5]. So, in our search for socially optimal
points we limit our search to Pareto optimal points.

As a practical example, we consider a variant of the
transportation problem, which is one of the most widely
studied network flow problems [1, Section 9.1]. Sup-
pose we have a certain number of products located at
different warehouses. The products need to be shipped to
geographically dispersed retail centers. Each retail center
has a demand for a certain number of the products. The
shipment of the products must satisfy these demands.
Often there exists multiple alternative shipments be-
tween two locations. Each of these shipments is carried
out by different organizations or entities, each interested
in maximizing its profit. With a specific type of shipment
from one geographical location to another, we can
associate one player. The profit of a player depends
on the number of products shipped and can be highly
nonlinear. We seek a Pareto optimal point, which is a
feasible transportation solution such that moving to some
other point makes at least one player strictly worse off.
Related work and contributions: In this paper, we pro-
pose an extension of the minimum (nonconvex) cost



flow problem with integer flows in a multi-player setup
and construct an algorithm to compute a Pareto optimal
solution. Our problem can be interpreted as a multi-
objective optimization problem [12, Section 4.7.5] with
the objective vector consisting of a number of univariate
nonconvex cost functions subject to the network flow
constraints and integer flows. Finding Pareto optimal
points in multi-objective network flow problems with
integer flows has been limited to linear cost functions
and two objectives [15]–[17]. Also, there have been
significant works done on integer multi-commodity flow
problems [18]–[20]. In comparison to these works, the
cost function structure in our setup is more general
(proper function) and it has an arbitrary number of
components. However, our setup is single-commodity
and each of the cost components is univariate due to the
problem structure.

We show that, although in its original form the problem
has coupled constraints binding every player, there exists
an equivalent variable transformation that decouples the
optimization problems for a number of players. Solving
these decoupled optimization problems can potentially
lead to a significant reduction in the number of candidate
points to be searched. We use the solutions of these
decoupled optimization problems to reduce the size of
the set of candidate Pareto optimal solutions even further
using algebraic geometry, and finally solve a sequence
of univariate optimization problems for the rest of the
players to find a Pareto optimal point. To the best of our
knowledge, our methodology is novel.

The rest of the paper is organized as follows. Section II
describes the problem. In Section III we show how to de-
couple the optimization problems for a number of play-
ers. Section IV transforms the optimization problems for
the rest of the players using consensus constraints. In
Section V we present the algorithms to compute a Pareto
optimal point for our problem. Section VI presents an
illustrative numerical example of our methodology in a
transportation setup. Section VII presents some remarks
on our methodology and possible future works.

II. PROBLEM STATEMENT

A. Notation and notions

We denote the sets of real numbers, integers and natural
numbers by R, Z and N respectively. The set of
consecutive integers from 1 to n is denoted by [n] =
{1, 2, . . . , n} and m to n is denoted by [m : n] =
{m,m+1, . . . , n}. The ith column, jth row and (i, j)th
component of a matrix A ∈ Rm×n is denoted by Ai,
aTj and aij . The submatrix of a matrix A ∈ Rm×n,

which constitutes of its rows r1, r1 + 1, . . . , r2, and
columns c1, c1 + 1, . . . , c2 is denoted by A[r1:r2,c1:c2].
For x, y ∈ Rn, x � y ⇔ (∀i ∈ [n]) xi ≥ yi. Two
copies of x ∈ Rn are denoted by x(1) and x(2).

B. Network strucuture

Let G = (M,A) be a directed connected graph asso-
ciated with a network, where M = [m + 1] is the set
of nodes, and A = [n] is the set of directed arcs. With
each arc j ∈ A, we associate one player (called the
jth player). The variable controlled by the jth player
is the nonnegative integer flow on arc j, denoted by
xj ∈ Z. Each player minimizes a nonconvex cost
function fj(xj) : Z → R, subject to the network flow
constraints. We assume each of the cost functions is
proper, i.e., for all i ∈ [n] we have −∞ 66∈ fi(Z), and
domfi = {xi ∈ Zn | fi(xi) < +∞} 6= ∅. There is
an upper bound uj , which limits how much flow the
jth player can carry through arc j. Without any loss of
generality we take the lower bound on every arc to be 0
[1, page 39]. The supply or demand of flow at each node
i ∈M is denoted by bi ∈ Z. If bi > 0, then i is a supply
node; if bi < 0, then i is a demand node with a demand
of −bi, and if bi = 0 then i is a transshipment node.
We allow parallel arcs to exist between two nodes. The
vector formed by all the decision variables is denoted by
x = (x1, x2, . . . , xn) ∈ Zn. By x−j ∈ Zn−1 we denote
the vector formed by all the players’ decision variables
except xj . To put emphasis on the jth player’s variable
we sometimes write x as (xj , x−j).
The constraint set : The constraint set in any minimum
cost flow problem consists of three types of constraints.
They are:

(i) Mass balance constraint. This constraint states that
for any node, the outflow minus inflow must equal the
supply/demand of the node. We describe the constraint
using node-arc incidence matrix. Let us fix a particular
ordering of the arcs, and let x ∈ Zn be the the vector
of flows that results, when the components xjs are
ordered accordingly. We define the augmented node-arc
incidence matrix Ã with each row corresponding to a
node and each column corresponding to an arc. The
(i, j)th entry of Ã corresponds to ith node and jth arc,
and is defined as follows.

ãij =


1, if i is the start node of the jth arc,
−1, if i is the end node of the jth arc,
0, otherwise.

Note that parallel arcs will correspond to different
columns with same entries in the matrix. So every
column of Ã has exactly two nonzero entries, one



equal to 1, one equal to −1, indicating the start node
and the end node of the associated arc. Denote, b̃ =
(b1, . . . , bm, bm+1). Then, in matrix notation we write
the mass balance constraint as Ãx = b. Note that the
sum of the rows of Ã is equal to zero vector, so the
rows are linearly dependent. By removing the last row
of the linear system we can arrive at Ax = b, where,
A = Ã[1:m,1:n] and b = b̃[1:m]. Now A, which is
called the node-arc incidence matrix, is a full row rank
matrix under the assumption of G being connected and∑
i∈N bi = 0 [21, Corollary 7.1]. Note that,

∑
i∈N bi =

0, otherwise the problem is infeasible.

(ii) Flow bound constraint. The flow on any arc must
be nonnegative and satisfy the capacity constraints, i.e.,
0 � x � u.

(iii) integrality constraint. The flow on any arc is integer,
i.e., x ∈ Zn.

C. Multi-player problem

The goal of the ith player for i ∈ [n], given other play-
ers’ strategies x−i ∈ Zn−1, is to solve the minimization
problem

minimizexi
fi (xi)

subject to Ax = Aixi +

n∑
j=1,j 6=i

Ajxj = b

0 � (xi, x−i) � u
(xi, x−i) ∈ Zn.

(1)

So the constraint set, which we denote by P can be
written as,

P = {x ∈ Zn | Ax = b, 0 � x � u} , (2)

and the subset of P containing only the equality con-
straints is denoted by

Q = {x ∈ Zn | Ax = b} . (3)

Our objective is to devise an algorithm to calculate
Pareto optimal point(s) for (1). A Pareto optimal point
is defined as follows.

Definition 1: In (1) a point x∗ ∈ P is called Pareto
optimal if it satisfies the following: there does not exist
another point x̃ ∈ P such that

(∀i ∈ [n]) fi(x̃i) ≤ fi(x∗i ),

with at least one j ∈ [n] satisfying fj(x̃j) < fj(x
∗
j ).

III. DECOUPLING THE LAST n−m OPTIMIZATION
PROBLEMS

In this section, we show how to decouple the optimiza-
tion problems for the last n−m players. First, we present
the following lemma.

Lemma 1: Consider a node-arc incidence matrix A.
Then from A, we can extract a unimodular m×m square
submatrix B.

Proof: Recall that, an integer square matrix is uni-
modular if its determinant is ±1. The node-arc incidence
matrix of a directed graph is totally unimodular [22,
Theorem 3.3 (a)], i.e., the determinant of any square
submatrix of A is 0, 1 or −1. The matrix A is full row
rank (with rank m), so there must be m linearly indepen-
dent columns in it. Take m linearly independent columns
AB(1), AB(2), . . . , AB(m) where B(1), B(2), . . . , B(m)
are the indices of those columns. Construct the square
submatrix B = [AB(1) | . . . |AB(m)], which is a full rank
matrix, so invertible. As a result, B, which is a square
submatrix of a totally unimodular matrix A, must have
determinant ±1, hence B is unimodular.

Without any loss of generality, we rearrange and reindex
the columns of the matrix A so that A = [B | Am+1 |
. . . | An]. Now we have the following lemma.

Lemma 2: Let C = B−1A and d = B−1b. Then, C ∈
Zm×n, d ∈ Zm, and the constraint set P and Q (in (2),
(3)) has the equivalent representation:

P = {x ∈ Zn | Cx = d, 0 � x � u} , (4)
Q = {x ∈ Zn | Cx = d} . (5)

Proof: Unimodularity of B is equivalent to uni-
modularity of B−1 [23, Theorem 4.3]. So, C = B−1A ∈
Zm×n and d = B−1b ∈ Zm, as A and b are integer
matrices. So, Ax = b⇔ Cx = d.

Lemma 3: Consider the unimodular matrix

U =

[
Im×m −B−1A[1:m,m+1:n]

0n−m×m In−m×n−m.

]
.

Then, CU = [Im×m | 0m×n−m].

Proof: Follows from multiplying C = [Im×m |
B−1Am+1 | · · · | B−1An] with U .

The following theorem is key in transforming problem
(1) into an equivalent form with n − m decoupled
optimization problems for players i ∈ [m+ 1 : n].

Theorem 1: The constraint set Q in (3) is nonempty and
for any x, x ∈ Q there exists z ∈ Zn−m such that

x = (d1 − hT1 z, . . . , dm − hTmz, z1, . . . , zn−m), (6)



where di is the ith component of d = B−1b, and hTi ∈
Zn−m is the ith row of B−1A[1:m,m+1:n].

Proof: Let y = U−1x, where U is defined in
Lemma 3. As U is unimodular, so is U−1, so x ∈ Zn ⇔
y ∈ Zn. Let y = (y1, y2) where y1 ∈ Zm and y2 ∈
Zn−m. So x ∈ Zn, Cx = d is equivalent to the existence
of an y ∈ Zn such that CUy = y1 = d. As d = B−1b ∈
Zm (Lemma 2), by taking y = (y1, y2) = (d, z) ∈ Zn,
where z ∈ Zn−m, we can satisfy the condition above.
Thus Q is nonempty. Finally x ∈ Q is equivalent to
x = Uy = (d1−hT1 z, . . . , dm−hTmz, z1, . . . , zn−m).

Remark: From Theorem 1, xi = zi for i ∈ [m+ 1 : n].
So, in (1) we can write the optimization problems for
any player m+ i for i ∈ [1 : n−m] in the new variable
z as follows.

minimizezi fi(zi)

subject to 0 ≤ zi ≤ ui
zi ∈ Z.

(7)

Each of these n − m optimization problems is a de-
coupled univariate optimization problem, which we can
easily solve graphically or by sorting. Doing so im-
mediately reduces the feasible set into a much smaller
set. Let us denote the sorted set of different optimal
solutions for player m + i for i ∈ [n − m] as Di =
{zi,1, zi,2, . . . , zi,pi}, where pi is the total number of
minimizers. Define, D =×n−m

i=1
Di, where× denotes

the Cartesian product.

IV. CONSENSUS REFORMULATION FOR THE FIRST m
PLAYERS

In this section, we transform the optimization problems
for the first m players in z using consensus constraints.
Consider the optimization problems for the first m
players in variable z, which have coupled costs due to
(6). We deal with the issue by introducing consensus
constraints [24, Section 5.2]. We provide each player
i ∈ [m] with its own local copy of z, denoted by
z(i) ∈ Zn−m, which acts as its decision variable. This
local copy has to satisfy the following conditions. First,
using (6) for any i ∈ [m], xi = di − hTi z(i). The copy
z(i) has to be in consensus with the rest of the first m
players, i.e., z(i) = z(j) for all j ∈ [m] \ {i}. Second,
the copy z(i) has to satisfy the flow bound constraints,
i.e., 0 ≤ di − hTi z(i) ≤ ui for all i ∈ [m]. Third, for
the last n − m players zi ∈ Di, as obtained from the
solutions of the decoupled optimization problems (7), so
z(i) has to be in D, i.e., z(i) = z ∈ D for all i ∈ [m].
So, for all i ∈ [m], the ith player’s optimization problem

in variable z(i) can be written as:

minimizez(i) f̄i

(
z(i)
)

= fi(di − hTi z(i))

subject to z(i) = z(j), j ∈ [m] \ {i}
0 ≤ di − hTi z(i) ≤ ui
z
(i)
j ∈ Dj , j ∈ [n−m].

(8)

An integer linear inequality constraint α ≤ v ≤ β, where
α, β, v ∈ Z is equivalent to v ∈ {α, α + 1, . . . , β} ⇔
(v − α)(v − α− 1) · · · (v − β) = 0. Using this fact, we
write the last two constraints in (8) in polynomial forms
as follows.

qi(z
(i)) = (di − hTi z(i))(di − hTi z(i) − 1) · · ·

· · · (di − hTi z(i) − ui), (9)

rj(z
(i)) = (z

(i)
j − zj,1)(z

(i)
j − zj,2) . . . (z

(i)
j − zj,pi),

j ∈ [n−m] (10)

Hence, for all i ∈ [m] any feasible z(i) for problem (8)
comes from the following set:

F =

m⋂
i=1

{z ∈ Zn−m | qi(z) = 0,

(∀j ∈ [n−m]) rj(z) = 0}
= {z ∈ Zn−m | (∀i ∈ [m]) qi(z) = 0,

(∀j ∈ [n−m]) rj(z) = 0} (11)

In (11), the intersection in the first line ensures that the
consensus constraints are satisfied, and the second line
just expands the first. So, the optimization problem (8)
is equivalent to

minimizez(i) f̄i

(
z(i)
)

subject to z(i) ∈ F ,
(12)

for i ∈ [m], i.e., each of these players are optimizing
over a common constraint set F . So, finding the points
in F is of interest.

V. ALGORITHMS TO COMPUTE A PARETO OPTIMAL
POINT

This section is organized as follows. First, we re-
view some necessary background on algebraic geometry.
Then we present a theorem to check if F is nonempty,
and provide an algorithm to compute the points in
a nonempty F . Finally, we present our algorithm to
compute Pareto optimal point(s) for our problem.



A. Background on algebraic geometry

A monomial in variables x = (x1, x2, . . . , xn) is a
product of the structure xα = xα1

1 · · ·xαn
n , where α =

(α1, . . . , αn) ∈ Nn. A polynomial is a linear combina-
tion of monomials. The set of all real polynomials in
x = (x1, . . . , xn) with complex coefficients is denoted
by C[x] with the variable ordering x1 > x2 > · · · > xn.
The ideal generated by f1, . . . , fm ∈ C[x] is the set

ideal {f1, . . . , fm} = {
m∑
i=1

hifi | (∀i ∈ [m]) hi ∈ C[x]},

and the affine variety V of f1, . . . , fm is the set

V (f1, . . . , fm) = {x ∈ Cn | (∀i ∈ [m]) fi(x) = 0}.
(13)

A monomial order on C[x1, . . . , xn] is a relation, de-
noted by �, on the set of monomials xα, α ∈ Nn

satisfying the following: (i) it is a total order, (ii) every
nonempty subset of Nn has a smallest element under
� and (iii) xα � xβ ⇒ xα+γ � xβ+γ , where xγ

is any monomial. We will use lexicographic order,
where we say xα �lex x

β if and only if the left most
nonzero entry of α − β is positive. Suppose we are
given a monomial order � and a polynomial f(x) =∑
α∈S fαx

α. The leading term of the polynomial with
respect to �, denoted by lt� (f), is that monomial
fαx

α with fα 6= 0, such that xα � xβ for all other
monomials xβ with fβ 6= 0. The monomial xα is
called the leading monomial of f . Consider a nonzero
ideal I = ideal {f1, . . . , fm}. The set of the leading
terms for the polynomials in I is denoted by lt� (I).
Thus lt� (I) = {cxα | (∃f ∈ I) lt�(f) = cxα} . By
ideal {lt� (I)} with respect to � we denote the ideal
generated by the elements of lt� (I).

A Groebner basis G� of an ideal I with respect
to monomial order � is a finite set of polynomi-
als f1, . . . , fm ∈ I such that ideal {lt� (I)} =
ideal {lt� (f1) , . . . , lt� (fm)} . A reduced Groebner
basis Greduced,� is a Groebner basis with respect to
monomial order � such that, for any f ∈ Greduced,�
the coefficient associated with lt� (f) is 1, and for
all f ∈ Greduced,� no monomial of f lies in
ideal {lt� (G \ {f})}. For a nonzero ideal I and given
monomial ordering the reduced Groebner basis is unique
[25, Page 92, Proposition 6]. A Groebner basis with
respect to lexicographic order is denoted by Greduced,�lex .
For any l ∈ [0 : n − 1], Il = I ∩ C[xl+1, . . . , xn]
is the lth elimination ideal of the ideal I , and Gl =
Greduced,�lex ∩ C [xl+1, . . . , xn] is a Groebner basis for
Il.

B. Nonemptyness of F
Using the definition of affine variety in (13), we can
write F in (11) as follows.

F = V (q1, . . . , qm, r1, . . . , rn−m) ∩ Zn−m. (14)

So finding points in F is equivalent to finding integer
points in a certain affine variety. Whether F is nonempty
can be checked by the following theorem.

Theorem 2: The set F is nonempty if and only if

Greduced,� 6= {1},

where Greduced,� is the reduced Groebner basis of
ideal {q1, . . . , qm, r1, . . . , rn−m} with respect to any
ordering.

Proof: Due to space limitation, we provide a proof
sketch only. From (11) we see that the elements of F
are the solution of the polynomial system: qi(z) = 0
for i ∈ [m] and rj(z) = 0 for j ∈ [n −m]. We show
that the polynomial system is feasible if and only if
1 /∈ ideal {q1, . . . , qm, r1, . . . , rn−m}. Along the way,
we show that feasibility of the system in Cn−m is
equivalent to its feasibility in Zn−m, i.e.,

V (q1, . . . , qm, r1, . . . , rn−m) ∩ Zn−m

= V (q1, . . . , qm, r1, . . . , rn−m) (15)

Finally, we can show that 1 /∈
ideal {q1, . . . , qm, r1, . . . , rn−m} is equivalent to
Greduced,� 6= {1} by applying the consistency algorithm
[25, page 172].

There are several computer algebra packages that can
compute the reduced Groebner basis such as Macaulry2,
SINGULAR, FGb, Mathematica etc. Now we describe
how to extract the points in a nonempty F based on
algebraic elimination theory [25, Chapter 3]. First we
present the following lemma.

Lemma 4: Suppose Greduced,� 6= {1}. Then F =
V (Greduced,�lex) .

Proof: By Theorem 2 F 6= ∅. So from (14) and
(15) we have, F = V (q1, . . . , qm, r1, . . . , rn−m) ,
and due to [25, page 32, Proposition 4]
V (q1, . . . , qm, r1, . . . , rn−m) = V (Greduced,�lex) .

Now we present Algorithm 1 (please see next page) that
can calculate all the points in a nonempty F .

Lemma 5: Algorithm 1 correctly calculates all the
points in F when it is nonempty.



Algorithm 1 Extracting the points in F
Input: Polynomial system qi(z) = 0 for i ∈ [m] and rj(z) = 0 for
j ∈ [n−m], Greduced,�lex 6= {1}.
Output: The set F .

Algorithm:
• Calculate the set

Gn−m−1 = Greduced,�lex ∩C [zn−m] ,

which is a Groebner basis of the (n − m)th elimination
ideal of ideal {q1, . . . , qm, r1, . . . , rn−m} and consists of
univariate polynomials in zn−m as an implication of [25, page
116, Theorem 2]. Find the variety of Gn−m−1, denoted by
V (Gn−m−1) , which will contain the list all possible zn−m

coordinates for the points in F .
• Calculate

Gn−m−2 = Greduced,�lex ∩C [zn−m−1, zn−m] ,

which is again a Groebner basis of the (n−m−1)th elimination
ideal of

ideal {q1, . . . , qm, r1, . . . , rn−m}

and consists of bivariate polynomials in zn−m and zn−m−1.
From Step 1, we already have the zn−m coordinates for
the points in F . So, by substituting those |V (Gn−m−1)|
values in Gn−m−2, we arrive at a set of univariate poly-
nomials in zn−m−1, denoted by {Ḡ(i)

n−m−2}
|V (Gn−m−1)|
i=1 .

For all i = 1, 2, . . . , |V (Gn−m−1)|, find the variety of
Ḡ

(i)
n−m−2, denoted by V (Ḡ

(i)
n−m−2) which will contain the

list all possible zn−m−1 coordinates associated with a partic-
ular zn−m ∈ V (Gn−m−1). Now we have all the possible
(zn−m−1, zn−m) coordinates.

• We repeat this procedure for Gn−m−3, Gn−m−4, . . . , G0. In
the end, we have all the points in F .

return F .

Proof: By Theorem 2, Greduced,�lex 6= {1}. So,
by the elimination theorem [25, page 116, Theorem 2]
V (Gn−m−1) is nonempty and will contain all possible
zn−m coordinates for the points in F . As Greduced,�lex 6=
∅, when moving from one step to the next, not all the
affine varieties associated with the univariate polyno-
mials (after replacing the previous coordinates into the
elimination ideal) can be empty due to the extension the-
orem [25, page 118, Theorem 3]. Using this logic repeat-
edly, the final step will give us F = V (Greduced,�lex) 6= ∅.

C. Finding the Pareto optimal points from F
Suppose, Greduced,�lex 6= {1}, and using Algorithm 1 we
have computed the elements of F . Now we propose
Algorithm 2 and show that the resultant points are Pareto
optimal.

Lemma 6: Consider (16)-(19) in Algorithm 2. For all
i ∈ [m− 1] we have F∗si+1

⊆ F∗si ⊆ F .

Proof: Follows from (18), (16) and (19).

Algorithm 2 Computing the set of solutions to problem
(12).
Input: The optimization problem (12) for any i ∈ [m], F 6= ∅.
Output: Pareto optimal solutions for problem (1).

Algorithm:
for i ∈ [m]

Xi :=
{
di − hT

i z(i) | z(i) ∈ F
}
,

(∀xi ∈ Xi) (Xi)
−1(xi) := {z(i) ∈ F | xi = di − hT

i z(i)}.
(16)

end for
Sort the elements of the {Xi}mi=1s with respect to cardinality of

the elements in a descending order. Denote the index set of the sorted
set by {s1, s2, . . . , sm} such that it is a partition of [m]

|X|s1 ≥ |X|s2 ≥ · · · ≥ |X|sm .

for i ∈ [m]
Solve the univariate optimization problem

minimizexsi
fsi (xsi )

subject to xsi ∈ Xsi ,
(17)

and denote the set of solutions by X∗si .

F∗si :=
⋃

xsi
∈X∗

si

(X∗si )−1(xsi ) ⊆ F , (18)

Xsi+1 :=
{
dsi+1 − hT

si+1
z | z ∈ F∗si

}
(19)

end for
return F∗sm .

Lemma 7: Consider (16)-(19) in Algorithm 2. For any
i ∈ [m], xsi ∈ X∗si if and only if z∗ ∈ F∗si . Furthermore,
z∗ ∈ F∗si solves the following optimization problem

minimizez fsi(dsi − hTsiz)
subject to z ∈ F∗si−1

,

for all i = 2, . . . ,m.

Proof: For any i ∈ [m], xsi ∈ X∗si ⇔ dsi −
hTsiz ∈ X∗si ⇔ z ∈ F∗si , from (6), (16) and (18). So,
minxsi

{fsi(xsi) | xsi ∈ Xsi} = minxsi
{fsi(dsi −

hTsiz) | z ∈ F
∗
si−1
}, where the second line follows from

(19) in Algorithm 2.

Note that in Algorithm 2, at every stage F∗si stays
nonempty for any i ∈ [m] as shown by the following
lemma.

Lemma 8: Suppose F 6= ∅. Then in Algorithm 2 F∗si is
nonempty for any i ∈ [m].

Proof: We prove by induction. As F 6= ∅, Xs1 6= ∅.
Now assume, for i ∈ [m] we have F∗si 6= ∅. Then



Cost function (ith row for player i)

− x4
1

30 −
13x3

1
15 +

259x2
1

30 − 263x1
15 + 1

77x5
2

120 −
247x4

2
24 +

471x3
2

8 − 3365x2
2

24 +
6779x2

60 + 1
47x4

3
24 −

133x3
3

4 +
4897x2

3
24 − 2123x3

4 + 485
323x5

4
3360 −

2179x4
4

1120 +
47393x3

4
3360 − 48709x2

4
1120 +

7885x4
168 + 5

(x5 − 1)2

− x4
6
8 +

25x3
6

12 −
71x2

6
8 +

95x6
12 + 10

|x7 − 5|
11x7

8
1260 −

7x6
8

36 +
119x5

8
72 − 479x4

8
72 +

4609x3
8

360 − 803x2
8

72 +
155x8

28 + 1

− 15
16x

3
9 +

365x2
9

16 − 2865x9
16 + 7315

16

(x10 − 10)2

5x4
11
6 − 35x3

11
3 +

355x2
11

6 − 370x11
3 + 90

5x4
12
6 − 25x3

12
3 +

175x2
12

6 − 110x12
3 + 15

5x4
13
6 − 15x3

13 +
595x2

13
6 − 280x13 + 285

5x4
14
6 − 85x3

14
3 +

2155x2
14

6 − 6020x14
3 + 4165

|x15 − 7|
x16 + 1, if 0 ≤ x16 ≤ 3

0, if 4 ≤ x16 ≤ 6

(x16 + 1)3, if 7 ≤ x16 ≤ 9

− x3
16
6 +

13x2
16

2 − 244x16
3 + 330, else

TABLE I: Cost functions for the numerical example

Xsi+1 :=
{
dsi+1 − hTsi+1

z | z ∈ F∗si
}
6= ∅. The asso-

ciated optimization problem is minxsi+1
{fsi+1(xsi+1) |

xsi+1 ∈ Xsi+1}. As we are optimizing over a finite and
countable set, a minimizer will exist. So, X∗si+1

6= ∅.
Hence F∗si+1

6= ∅ using (18).
Remark: Players achieve consensus and a Pareto op-
timal point by sequentially solving their optimization
problems over the same finite set, which by Lemmas 6
and 7 gets iteratively reduced. This is shown in the next
result.

Theorem 3: For any z∗ ∈ F∗sm , x∗ = (d1 −
hT1 z

∗, . . . , dm−hTmz∗, z∗1 , . . . , z∗n−m) is a Pareto optimal
point.

Proof: We want to show that, (i) x∗ is feasible, and
(ii) for any other feasible x such that fi(x∗i ) ≥ fi(xi)
for any i ∈ [n] it implies that fj(x∗j ) = fj(xj) for every
j ∈ [n]. Using (6), we can translate the Pareto optimality
condition in z as follows. Consider a z ∈ Zn−m such
that

(0, . . . , 0) �
((
di − hTi z

)m
i=1

, z
)
� (u1, . . . , un), (20)

and ((
fi(di − hTi z∗)

)m
i=1

, (fm+i(z
∗
i ))

n−m
i=1

)
�
((
fi(di − hTi z)

)m
i=1

, (fm+i(zi))
n−m
i=1

)
. (21)

Then we want to show that:((
fi(di − hTi z∗)

)m
i=1

, (fm+i(z
∗
i ))

n−m
i=1

)

=
((
fi(di − hTi z)

)m
i=1

, (fm+i(zi))
n−m
i=1

)
. (22)

Let’s start with the last n − m rows of (21). As,
z∗ ∈ F∗sm ⊆ F ⊆ D and by construction, D =

×n−m
i=1

Di, where any element of Di is a minimizer
of (7), so (fm+i(z

∗
i ))

n−m
i=1 � (fm+i(zi))

n−m
i=1 implies

(fm+i(z
∗
i ))

n−m
i=1 = (fm+i(zi))

n−m
i=1 . In the subsequent

steps it suffices to confine z ∈ D, as otherwise last
n−m inequalities of (21) will be violated. Now let us
consider the first m inequalities of (21). As discussed in
Section IV, z in D, 0 ≤ di − hTi z ≤ ui for i ∈ [m], is
equivalent to z ∈ F ⊆ D. Consider, s1 ∈ {1, . . . ,m}.
Lemmas 6 and 7 imply that z∗ solves the following
optimization problem minz{fs1(ds1−hTs1z) | z ∈ F} =
minxs1

{fs1(xs1) | xs1 ∈ Xs1}, which has solution
x∗s1 ∈ X

∗
s1 ⇔ z∗ ∈ F∗s1 ⊇ F

∗
sm . So, fs1(ds1 − hTs1z) ≤

fs1(ds1 − hTs1z
∗) implies fs1(ds1 − hTs1z) = fs1(ds1 −

hTs1z
∗) and z ∈ F∗s1 .

Now consider, s2 ∈ {1, . . . ,m} \ {s1}. First note that,
z ∈ F∗s1 else fs1(ds1 − hTs1z) ≤ fs1(ds1 − hTs1z

∗)
will not hold. Now any x∗s2 associated with z∗ solves
the following optimization problem minxs2

{fs2(xs2) |
xs2 ∈ Xs2} = minz{fs2(ds2 − hTs2z) | z ∈ F

∗
s1},

where an optimal solution to the first line will be
in X∗s2 and the optimal solution to the second line
will be in F∗s2 (Lemma 7). So, combining fs2(ds2 −
hTs2z) ≤ fs2(ds2 − hTs2z

∗) and z ∈ F∗s1 implies
fs2(ds2 − hTs2z) = fs2(ds2 − hTs2z

∗). Repeating similar
argument for i = s3, s4, . . . , sm we can show that for
any i ∈ {s1, . . . , sm}, we have fs2(ds2 − hTs2z) =
fsi(dsi − hTsiz

∗). As {s1, . . . , sm} is a partition of [m],
we have arrived at (22).

Fig. 1: Network in consideration

VI. NUMERICAL EXAMPLE FOR A TRANSPORTATION
PROBLEM

In this section, we present an illustrative numerical
example of our methodology in a transportation setup.



Figure 1 shows a randomly generated directed network
with 5 nodes and 16 arcs. Nodes 2 and 4 represent two
retail centers with demands for 13 and 11 units of a
certain product. The warehouses are denoted by nodes
1 and 3, which supply 9 and 15 units respectively. Node
5 is a transshipment node. Different modes of shipment
from one node to other is represented by the arcs in the
figure, and each of these shipments are carried out by
different organizations. The cost of a certain shipment
depends on the number of products shipped and is
nonlinear and not necessarily convex. With each arc
we associate one player. Each of the players is trying
to minimize its cost. We seek a Pareto optimal point in
this setup. We have used Wolfram Mathematica
10 for numerical calculation. The node-arc incidence
matrix of the matrix is denoted by A, with its rows given
by (1,0,0,0,-1,-1,-1,1,0,0,1,0,0,1,0,0), (0,1,0,0,1,0,0,-
1,-1,-1,0,0,0,0,1,0), (0,0,0,1,0,1,0,0,0,0,0,1,0,-1,-1,-1),
and (0,0,1,0,0,0,0,0,1,0,-1,-1,-1,0,0,1). We associate
player i with ith column of A. The resource vector b is
manually constructed (to have a feasible system) and is
given by (9,−13, 15,−11). The upper bound for the
decision vector x is randomly generated and is given by
u = (5, 6, 6, 10, 10, 7, 11, 13, 16, 12, 4, 5, 6, 14, 13, 15).
The cost functions for the players are listed in Table I.
All of the cost functions are randomly generated except
for players 5,7,10,15 and 16. For this example, from
Theorem 1 we have, x1 = z1+z2+z3−z4−z7−z10+9,
x2 = −z1 + z4 + z5 + z6 − z11 − 13,
x3 = −z5 + z7 + z8 + z9 − z12 + 15,
x4 = −z2 − z8 + z10 + z11 + z12 − 11, and
x4+i = zi for i ∈ [12]. First we solve the decoupled
univariate optimization problems for the last 12
players (problem (7)). The solution set is given by
as follows, D1 = {1}, D2 = {3}, D3 = {5},
D4 = {4, 6}, D5 = {7, 11}, D6 = {10}, D7 = {2},
D8 = {1}, D9 = {3}, D10 = {7}, D11 = {7} and
D12 = {4, 5, 6, 10, 11}. We find that Greduced,� 6= {1},
and the associated F (by Algorithm 1) has 6 elements,
which are as follows: (1,3,5,4,11,10,2,1,3,7,7,4),
(1,3,5,4,11,10,2,1,3,7,7,5), (1,3,5,4,11,10,2,1,3,7,7,6),
(1,3,5,6,11,10,2,1,3,7,7,4), (1,3,5,6,11,10,2,1,3,7,7,5)
and (1,3,5,6,11,10,2,1,3,7,7,6). Now we apply
Algorithm 2 to find the Pareto optimal
points, which are (1,3,5,4,11,10,2,1,3,7,7,5) and
(1,3,5,6,11,10,2,1,3,7,7,6).

VII. REMARKS AND FUTURE WORKS

The efficiency of our methodology will be high when
m < n

2 . Algorithm 1 computes the points in F using
Groebner basis. Calculating Groebner basis can be nu-
merically challenging for large systems [25, pages 111-

112], although in recent years significant speed-up has
been achieved by computer algebra packages. Also, it
may happen that F = V (Greduced,�lex) = ∅. In future,
we intend to study penalty based approaches to address
this case. Also, investigating if changes in the resource
vector b can result in a nonempty F can be of interest.
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