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Abstract— In this paper, we study the railway timetabling
problem to utilize regenerative braking energy produced by
trains in a railway network. An electric train produces regen-
erative energy while braking, which is often lost in present
technology. A positive overlapping time between braking and
accelerating phases of a suitable train pair makes it possible to
save electrical energy by transferring the regenerative energy
of the braking train to the accelerating one. We propose a
novel optimization model to determine a timetable that saves
energy by maximizing the total overlapping time of all suitable
train pairs. We apply our optimization model to different
instances of a railway network for a time horizon spanning
six hours. For each instance, our model finds an optimal
or near-optimal timetable within an acceptable running time.
We observe significant increase in the final overlapping time
compared to the existing timetable for every instance, thus
making it possible to save the associated electrical energy.

I. INTRODUCTION

A. Background and Motivation

In recent years, much emphasis has been placed on effi-

cient energy management of electric vehicles using mathe-

matical optimization techniques [1]–[4]. Among all vehicles,

trains are preferred by many people for being safer and

cheaper. Nowadays in most railway networks, trains use

electricity as their primary source of energy. In this regard, a

relevant problem is how to efficiently utilize electrical energy

in a railway network.

In modern railway networks, trains are generally equipped

with regenerative braking technology. When a train makes a

trip from an origin platform to a destination platform, its

optimal speed profile consists of four phases: accelerating,

speed holding, coasting and braking [5]. A train consumes

most of its required energy during the accelerating phase,

and it produces electrical energy, called regenerative braking

energy, during the braking phase [6] as shown in Figure 1.

Naturally, proper utilization of regenerative braking energy

of trains can lead to significant energy saving. However,

transferring the regenerative braking energy back to the elec-

trical grid requires specialized technology such as reversible

electrical substations [7, page 30], and storing it using current

technology, e.g., via super-capacitors [8], is very expensive

[9, page 66]. A better strategy to utilize the regenerative

braking energy of a train would be to synchronize its braking
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phase with the accelerating phase of another nearby train

operating under the same electrical substation. A positive

overlapping time arising from such a synchronization process

would make it possible to transfer the regenerative braking

energy of the first train to the latter via the overhead contact

line, thus saving the electrical energy which would be lost

otherwise. Our objective is to design an energy efficient

railway timetable, that contains the arrival and departure time

of every train to and from all the platforms it visits, such

that the duration of the synchronization processes between

suitable train pairs (SPSTPs) is maximized subject to the

different constraints present.

Time

Speed

Acceleration phase
Coasting phase

Speed holding

Braking phase

Power

Time

Energy consumed

Regenerative braking

phase

energy produced

Fig. 1. The speed profile of a train (top), and corresponding energy con-
sumed and produced in accelerating phase and braking phase respectively
(bottom).

B. Related Works

Though the general timetabling problem in a railway net-

work has been studied extensively over the past three decades

[10], very few works exist which attempt to determine a

timetable to utilize regenerative braking energy of trains.

The work by Peña-Alcaraz et al. [11] proposes a Mixed

Integer Programming (MIP) model, where the objective is to

maximize the total duration of all possible synchronization

processes between all train pairs and applies it successfully

to line 3 of the Madrid underground system in Spain.
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However, for many railway networks, considering all the

train pairs in the objective is not always realistic, because

energy transfer between trains not close to each other suffers

from drastic transmission loss. From a computational point

of view, including all train pairs is not very efficient, as the

search space for the optimization problem can become quite

large. Also, the model is only applicable to a single train-

line because of the absence of connection and turn-around

constraints. The works by Yang et al. [12] and Le et al.

[13] apply local search techniques such as genetic algorithm

and simulated annealing respectively to utilize regenerative

braking energy with application to Chinese railway network.

Their models only consider the energy transfer between train

pairs on the same train-line, which can also lead to significant

transmission loss. Moreover, being local search models, their

final timetables do not have any guarantee of optimality.

C. Contributions

Our contributions in this paper can be summarized as

follows:

• Using mathematical programming techniques, we pro-

pose a novel MIP model to utilize the regenerative brak-

ing energy of trains in a railway network. In comparison

with the existing works, our model can be applied to any

railway network.

• For most of the existing railway networks, the railway

management has a feasible timetable, which we exploit

to devise an optimization strategy. This strategy pro-

duces a smaller search space and is computationally

more tractable in comparison with the related works.

We prove that all possible cases arising from an SPSTP

are modelled accurately by our model.

• We apply our optimization model to different instances

of a real-life railway network and find that our model

gives optimal or near-optimal timetables in an accept-

able running time with a significant increase in the final

overlapping time.

D. Organization

This paper is organized as follows. In Section II we

describe the notation and notions to be used in this paper.

In Section III we define an SPSTP mathematically, propose

our optimization strategy and formulate a mixed integer

linear objective function. Then in Section IV we model and

justify various constraints present in the railway network.

We propose the full optimization model in Section V. In

Section VI we apply our model to realistic instances of

different size. Section VII presents the conclusion.

II. NOTATION AND NOTIONS

All the sets described in this paper are strictly ordered

and finite unless otherwise specified. The cardinality and the

ith element of such a set S is denoted by |S| and S(i)
respectively. Consider a railway network where the set of

all stations is denoted by S. The set of all platforms in the

railway network is indicated by N . A directed arc between

two distinct and non-opposite platforms is called a track.

The set of all tracks is represented by A. The directed graph

of the railway network is expressed by G = (N ,A). A

train-line or line is a directed path with the set of nodes

representing non-opposite platforms and the set of arcs

representing non-opposite tracks. A crossing-over is a special

type of directed arc that connects two train-lines. If after

arriving at the terminal platform of a train-line, a train turns

around by traversing the crossing-over and starts travelling

through another train-line, then the same physical train is

treated and labelled functionally as two different trains by the

railway management [14, page 41]. The set of all trains to be

considered in our problem is denoted by T . The sets of all

platforms and all tracks visited by a train t in chronological

order are denoted by N t ⊆ N and At ⊆ A respectively.

The train-path of a train is the directed path containing all

platforms and tracks visited by it in chronological order.

The decision variables to be determined are the arrival

and departure times of trains to and from the associated

platforms respectively. Let ati be the arrival time of train

t ∈ T at platform i ∈ N t and dtj be the departure time of

train t from platform j ∈ N t. Our objective is to maximize

the duration of total overlapping time of all SPSTPs subject

to the constraints, which would make it possible to save

significant amount of electrical energy produced by the

braking trains by transferring it to the accelerating trains.

III. MODELLING THE OBJECTIVE

At first, we need to characterize the train pairs and the

associated platform pairs necessary to describe the SPSTPs.

The platform pairs to consider are those opposite to each

other and powered by the same electrical substations, because

the transmission loss in transferring electrical energy be-

tween them is negligible. The set containing all such platform

pairs is denoted by Ω. Consider any such platform pair

(i, j) ∈ Ω, and let Ti ⊆ T be the set of all the trains which

arrive at, dwell and then depart from platform i. Suppose,

t ∈ Ti. Now, we are interested in finding another train t̃ on

platform j, i.e., t̃ ∈ Tj , which along with t would form a

suitable pair for the transfer of regenerative braking energy.

To achieve this, we use the fact that for most of the existing

railway networks, an initial feasible timetable is available

to the railway management, where too much deviation from

it is not desired. For every train t, this timetable provides

a feasible arrival time āti and a feasible departure time d̄ti
to and from every platform i ∈ N t respectively. Intuitively,

among all the trains going through platform j, the one which

is temporally closest to t in the initial timetable would be the

best candidate to form a pair with t. The temporal proximity

can be of two types with respect to t, which results in the

following definitions.

Definition 1: Consider any (i, j) ∈ Ω. For every train t ∈

Ti, the train
⇀

t ∈ Tj is called the temporally closest train

to the right of t if

⇀

t = argmin

t′∈{x∈Tj:0≤
āx
j
+d̄x

j

2
−

āt
i
+d̄t

i
2

≤r}

{∣

∣

∣

∣

∣

āti + d̄ti
2

−
āt

′

j + d̄t
′

j

2

∣

∣

∣

∣

∣

}

,

(1)
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where r is an empirical parameter determined by the

timetable designer and is much smaller than the time horizon

of the entire timetable.

Definition 2: Consider any (i, j) ∈ Ω. For every train t ∈

Ti, the train
↼

t ∈ Tj is called the temporally closest train

to the left of t if

↼

t = argmin

t′∈{x∈Tj:0<
āt
i
+d̄t

i
2

−
āx
j
+d̄x

j

2
≤r}

{∣

∣

∣

∣

∣

āti + d̄ti
2

−
āt

′

j + d̄t
′

j

2

∣

∣

∣

∣

∣

}

.

(2)

Definition 3: Consider any (i, j) ∈ Ω. For every train t ∈
Ti, the train t̃ ∈ Tj is called the temporally closest train to

t if

t̃ = argmin

t′∈{
⇀

t ,
↼

t }

{∣

∣

∣

∣

∣

āti + d̄ti
2

−
āt

′

j + d̄t
′

j

2

∣

∣

∣

∣

∣

}

. (3)

If both
⇀

t and
↼

t are temporally equidistant from t, we pick

one of them arbitrarily.

Any SPSTP can be described by specifying the corre-

sponding i, j, t and t̃ by using the definitions above. We

construct a set of all the SPSTPs, which we denote by E .

Each element of this set is a tuple of the form (i, j, t, t̃).
Because t̃ is unique for any t in each element of E , we can

partition E into two sets denoted by
⇀

E and
↼

E containing

elements of the form (i, j, t,
⇀

t ) and (i, j, t,
↼

t ) respectively.

For every (i, j, t,
⇀

t ) ∈
⇀

E our strategy is to synchronize

the accelerating phase of t with the braking phase of
⇀

t .

On the other hand, for every
↼

t ∈
↼

E , then it would be

convenient to synchronize the accelerating phase of
↼

t with

the braking phase of t. For every (i, j, t,
⇀

t ) ∈
⇀

E , the

corresponding overlapping time is denoted by σt
⇀

t
ij , and for

every (i, j, t,
↼

t ) ∈
↼

E , the corresponding overlapping time is

denoted by σt
↼

t
ij . Our objective is to maximize the sum of

overlapping times over all the elements of
⇀

E and
↼

E , i.e.,

maximize
∑

(i,j,t,
⇀

t )∈
⇀

E

σt
⇀

t
ij +

∑

(i,j,t,
↼

t )∈
↼

E

σt
↼

t
ij

subject to the constraints present in the system. (4)

We model σt
⇀

t
ij for all (i, j, t,

⇀

t ) ∈
⇀

E and σt
↼

t
ij for all

(i, j, t,
↼

t ) ∈
↼

E in terms of the arrival and departure times

of trains. Consider the case, when (i, j, t,
⇀

t ) ∈
⇀

E . We need

to ensure that after applying the optimization strategy
⇀

t still

stays the temporally closest train to the right of t. Otherwise,

the only way to achieve a positive overlapping time is to

synchronize the braking phase of t with the accelerating

phase of
⇀

t , which might result in a large deviation of event

times compared to the original timetable, especially when

there is no or very little overlapping to begin with. We write

this constraint as follows:

(

a
⇀

t
j + d

⇀

t
j − ati − dti

)

(

ā
⇀

t
j + d̄

⇀

t
j − āti − d̄ti + ǫ

) ≥ 0. (5)

Here ǫ is a very small positive number to prevent division

by zero.

Let us denote the start of the braking phase of train t before

arriving at platform i by at−i and the end of its accelerating

phase after departing from the same platform by dt+i . For

all t ∈ T and for all i ∈ N t, the durations of the associated

braking phase βt
i = ati−at−i and the associated accelerating

phase αt
i = dt+i − dti are assumed to be known parameters,

as they can be calculated from driving profiles determined

by existing simulation tools [15, page 3]. To model the

overlapping time σt
⇀

t
ij for all (i, j, t,

⇀

t ) ∈
⇀

E , we propose

the following lemma.

Lemma 1: For all (i, j, t,
⇀

t ) ∈
⇀

E , the overlapping time

σt
⇀

t
ij between the accelerating phase of t on platform i and

the braking phase of
⇀

t on platform j, where (i, j) ∈ Ω, can

be modelled by

a
⇀

t −
j − dt+i + ǫ ≤ M(1− λt

⇀

t
ij ), (6)

dti − a
⇀

t
j + ǫ ≤ M(1− λt

⇀

t
ij ), (7)

σt
⇀

t
ij ≥ 0, (8)

σt
⇀

t
ij ≤ αt

iλ
t
⇀

t
ij , (9)

σt
⇀

t
ij ≤ β

⇀

t
j λt

⇀

t
ij , (10)

σt
⇀

t
ij ≤ dt+i − a

⇀

t −
j +M(1− λt

⇀

t
ij ), (11)

σt
⇀

t
ij ≤ a

⇀

t
j − dti +M(1− λt

⇀

t
ij ), (12)

where M is a large positive number, ǫ is a small positive

number smaller than time granularity considered and λt
⇀

t
ij is

a binary variable which is one if and only if σt
⇀

t
ij is positive.

Proof: We omit the proof due to space constraint.

A short proof sketch is as follows. We use the hypograph

approach to model the overlapping time σt
⇀

t
ij in terms of the

associated event times [16, page 75, 134]. Next we use inter-

val algebra [17] to show that there can be thirteen different

kinds of overlapping possible between the accelerating phase

of train t and the braking phase of train
⇀

t . We arrive at the

goal by implementing integer programming modelling rules

[18, pages 166, 172-174, 183-184].

Now consider the case when (i, j, t,
↼

t ) ∈
↼

E . Like the

previous case, in this case as well, we need to ensure that

after applying the optimization strategy,
↼

t still stays the

temporally closest train to the left of t. Analogous constraint

to that of Equation (5) can be easily found by replacing t
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and
⇀

t in Equation (5) with
↼

t and t respectively as follows:
(

ati + dti − a
↼

t
j − d

↼

t
j

)

(

āti + d̄ti − ā
↼

t
j − d̄

↼

t
j

) ≥ 0. (13)

Note that the denominator can never be zero on the left

hand side of the equation above because of the definition of
↼

t in Equation (2). To model the overlapping time σt
↼

t
ij for

all (i, j, t,
↼

t ) ∈
↼

E , we propose the following lemma.

Lemma 2: For all (i, j, t,
↼

t ) ∈
↼

E , the overlapping time

σt
↼

t
ij between the braking phase of t on platform i and the

accelerating phase of
↼

t on platform j, where (i, j) ∈ Ω, can

be modelled by the equations:

at−i − d
↼

t +
j + ǫ ≤ M(1− λt

↼

t
ij ), (14)

d
↼

t
j − ati + ǫ ≤ M(1− λt

↼

t
ij ), (15)

σt
↼

t
ij ≥ 0, (16)

σt
↼

t
ij ≤ α

↼

t
j λt

↼

t
ij , (17)

σt
↼

t
ij ≤ βt

iλ
t
↼

t
ij , (18)

σt
↼

t
ij ≤ d

↼

t +
j − at−i +M(1− λt

↼

t
ij ), (19)

σt
↼

t
ij ≤ ati − d

↼

t
j +M(1− λt

↼

t
ij ), (20)

where M is a large positive number, ǫ is a small positive

number smaller than time granularity considered and λt
↼

t
ij is

a binary variable which is one if and only if σt
↼

t
ij is positive.

Proof: The lemma can be easily proved by replacing t

and
⇀

t with
↼

t and t respectively in Lemma 1.

IV. MODELLING THE CONSTRAINTS

The constraints in the railway network show how the

events are related. In this section, we describe, model and

justify the constraints.

A. Trip Time Constraint

Consider the trip of any train t ∈ T from platform i to

platform j along the track (i, j) ∈ At. The train t departs

from platform i at time dti and arrives at platform j at time

atj and the train can have a trip time between τ tij and τ tij .

The trip time constraint can be written as follows:

∀t ∈ T ∀(i, j) ∈ At
(

τ tij ≤ atj − dti ≤ τ tij
)

. (21)

B. Dwell Time Constraint

When any train t ∈ T arrives at a platform i ∈ N t, it

dwells there for a certain time interval denoted by [δti, δ
t

i] so

that the passengers can get off and get on the train. After the

dwelling time is over, the train departs from the station. The

difference between the departure time dti and arrival time ati
corresponding to the dwelling mentioned lies between δti and

δ
t

i. The dwell time constraint can be written as follows:

∀t ∈ T ∀i ∈ N t (δti ≤ dti − ati ≤ δ
t

i). (22)

Every train t ∈ T arrives at the first platform N t(1) in

its train-path either from the depot or by turning around

from some other line, and departs from the final platform

N t(|N t|) in order to either return to the depot or start as

a new train on another line by turning around. So, the train

t dwells at all the platforms in N t. This is the reason why

in Equation (22) the platform index i is varied over all the

elements of the set N t.

C. Connection Constraint:

In many cases, a single train might not exist between the

origin and desired destination of a passenger. To circumvent

such issues, connecting trains are often used by the railway

management at interchange stations. Let χ ⊆ N × N be

the set of platform pairs where passengers transfer between

trains. If (i, j) ∈ χ, then both the platforms i and j are

situated at the same station, and there exist a train t ∈ T
arriving at platform i and another train t′ ∈ T departing

from platform j such that a connection time window needs

to be maintained between train t and t′ for passengers to get

off from the first train and get on the latter. Note that order

matters here. Let Cij be the set of connecting train pairs for

a platform pair (i, j) ∈ χ. Then the connection constraint

can be written as:

∀(i, j) ∈ χ ∀(t, t′) ∈ Cij (χtt′

ij
≤ dt

′

j − ati ≤ χtt′

ij ), (23)

where χtt′

ij
and χtt′

ij are the lower bound and upper bound

of the time window to achieve the described connection

between the associated trains.

D. Turn-around Constraint:

After arriving at the terminal platform of a train-line, a

train might turn around by traversing the crossing-over and

start travelling through another train-line. From a railway

management perspective, a time window has to be main-

tained between the departure of the train from the terminal

platform of the first line and the arrival time of it (labelled

as a different train, though it is physically the same train)

on another platform of the second line. Let ϕ be the set of

all crossing-overs, where turn-around events occur. Consider

any crossing-over (i, j) ∈ ϕ, where the platforms i and j

are situated on different train-lines. Let Bij be the set of

all train pairs involved in corresponding turn-around events.

Let (t, t′) ∈ Bij . Train t ∈ T turns around at platform i

by travelling through the crossing-over (i, j), and beginning

from platform j starts traversing a different train-line as train

t′ ∈ T \ {t}. A time window denoted by [κtt′

ij , κ
tt′

ij ] has to

be maintained between the mentioned events, where κtt′

ij and

κtt′

ij are the lower bound and upper bound respectively. We

can write this constraint as follows:

∀(i, j) ∈ ϕ ∀(t, t′) ∈ Bij (κtt′

ij ≤ at
′

j − dti ≤ κtt′

ij ). (24)

E. Headway Constraint:

In any railway network, a minimum amount of time

between the departures of consecutive trains is always main-

tained. This time is called headway time. Let (i, j) ∈ A
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TABLE I

RESULTS OF THE NUMERICAL STUDY (RUNNING TIME 1200 S)

Headway
Time (s)

Number
of
Trains

Number
of Con-
straints

Binary
Vari-
ables

Real
Vari-
ables

Non-
zero
Coeffi-
cients

Explored
Nodes

CPU
Time (s)

Initial
Over-
lapping
Time

Final
Over-
lapping
Time

Increase
in Over-
lapping
Time

Relative
Opti-
mality
Gap

257 108 4223 100 2469 9246 0 1.09 0 1000 Infinity 0%

231 121 6370 346 2999 15508 30 3.8 1887 3460 83.36% 0%

193 144 8496 542 3699 21328 349 9.54 2151 5420 151.98% 0%

178 156 7253 308 3729 16970 6 4.52 222 3080 1287.39% 0%

154 180 9619 534 4479 23510 285 11.48 379 5340 1308.97% 0%

144 192 11610 762 4971 29316 228676 1200 2887 7425 157.19% 0.97%

136 204 12047 768 5241 30238 819 25.44 2337 7680 228.63% 0%

128 216 14108 1006 5743 36264 203 17.5 3837 10060 162.18% 0%

121 228 15645 1170 6167 40650 1450 43.54 3661 11700 219.58% 0%

115 240 19400 1650 6911 52000 1672 66.71 6968 16500 136.80% 0%

110 252 17401 1308 6833 45266 1428 69.51 4752 13080 175.25% 0%

105 263 18096 1356 7121 47040 1027 56.81 5284 13560 156.62% 0%

100 275 15425 918 6947 38194 156 17.06 4318 9180 112.60% 0%

96 288 20722 1614 7927 54356 1423 122.39 5515 16140 192.66% 0%

92 300 20319 1500 8077 52638 1475 116.11 3989 15000 276.03% 0%

89 311 18746 1224 8041 47284 1224 115.8 4372 12240 179.96% 0%

82 336 27714 2388 9753 74532 16200 1200 9666 23680 144.98% 0.32%

be the track between two platform i and j, and Hij be the

set of train-pairs who move along that track successively

in the order of their departures. Now, assume train t and

train t′ are moving along this track in same direction where

(t, t′) ∈ Hij . Let htt′

i and htt′

j be the associated headway

times at platform i and platform j respectively. So, the

headway constraint can be written as:

∀(i, j) ∈ A ∀(t, t′) ∈ Hij

(htt′

i ≤ dt
′

i − dti ∧ htt′

j ≤ dt
′

j − dtj). (25)

F. Total Travel Time Constraint:

To maintain the quality of service in the railway network,

it is desired that for every train t ∈ T , the total travel time to

traverse its train-path stays within a time window [τ tP , τ
t
P ],

where τ tP and τ tP are the corresponding lower and upper

bound respectively. We can write this constraint as follows:

∀t ∈ T (τ tP ≤ atN t(|N t|) − dtN t(1) ≤ τ tP). (26)

Here N t(1) and N t(|N t|) are the first and last platform in

the train-path of t.

V. FULL OPTIMIZATION MODEL

In this section, we collect the objective and all the con-

straints discussed in the previous two sections, and propose

our optimization problem to maximize the total duration

of overlapping times of the SPSTPs in order to utilize

regenerative braking energy produced by trains in a railway

network. The full optimization model is as follows:

maximize
∑

(i,j,t,
⇀

t )∈
⇀

E

σt
⇀

t
ij +

∑

(i,j,t,
↼

t )∈
↼

E

σt
↼

t
ij

subject to

Equations (21), (22), (23), (24), (25) and (26)

∀(i, j, t,
⇀

t ) ∈
⇀

E Equations (5),(6)-(12)

∀(i, j, t,
↼

t ) ∈
↼

E Equations (13),(14)-(20)

∀t ∈ T ∀i ∈ N t (dt+i = dti + αt
i, a

t
i = βt

i + at−i ,

ati ≥ 0, dti ≥ 0)

∀(i, j, t, t̃) ∈ E (λtt̃
ij ∈ {0, 1}, σtt̃

ij ≥ 0).

The decision variables are ati, d
t
i, λ

tt̃
ij and σtt̃

ij . As the model

is a MIP with bounds, the optimization problem is NP-hard

[19, page 242]. However, in the next section we show that

for the size of the railway data considered in practice, the

running time is quite acceptable.

VI. NUMERICAL EXPERIMENT

BANH

BAN

1067

SHA

LIM WES ISP1

WIQ

CAW

HEQ SOQ CRO

CROHLine 1

Line 2

Fig. 2. Railway network considered for numerical experiment

In this section, we apply our model to different problem

instances of varying size. All the experiments were executed
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on a Intel Core i5-3317U 1.70GHz CPU with 4096 MB of

RAM running the Windows 8.1 operating system. We have

used IBM ILOG CPLEX Optimization Studio 12.6 academic

version with OPL as our modelling language to perform the

optimization.

We have applied the proposed optimization model to

a railway network that is a part of the Docklands Light

Railway as shown in Figure 2. Platforms are denoted by

rectangles in the figure. The railway network has two train-

lines denoted by Line 1 and Line 2. There are ten stations in

this network denoted by capitalized words and each station

has two opposite platforms, e.g., BAN is a station which has

two opposite platforms: one on Line 1 and the other on Line

2. The platforms denoted by 1067 and ISP1 are intermediate

stopping points on Line 1. The platforms indicated by BANH

and CROH are turn-around points on Line 1 and Line 2

respectively.

For our numerical study, we have considered 18 different

instances with varying headway times and number of trains.

As the headway time decreases, the number of trains in

the network increases. In each instance we have an initial

feasible timetable with a duration of six hours. In most of the

railway networks the duration of the off-peak or rush hours

is smaller than six hours, so a timetable spanning six hours is

sufficient for practical purpose. The feasible timetables are

generated by the Timetable Compiler software which is a

proprietary tool developed by Thales Canada Incorporated.

We have taken M = 1000 and ǫ = 0.005. We have applied

our optimization model to find the optimal timetable that

maximizes the total overlapping time of the SPSTPs. We

see from Table I that for each instance, our optimization

model produces an optimal or near-optimal timetable with

significant increase in the total overlapping time in compar-

ison with the initial timetable, with the minimum one being

83.36%. Such increase in the total overlapping time would

make it possible to save significant amount of electrical

energy produced by the braking trains by transferring it

to the accelerating trains via the overhead contact lines.

Optimal solutions are obtained for all the instances within the

running time of 1200 s, except two instances corresponding

to headway times of 144 s and 82 s. For those that did not

reach optimality, the relative optimality gaps are very small,

the largest being 0.97%.

VII. CONCLUSION

In this paper, we have presented an energy-efficient opti-

mization model that utilizes the regenerative energy produced

by the braking trains in a railway network. We have proposed

an optimization strategy and devised an objective function

based on the hypograph approach and interval algebra. We

have modelled the different constraints present in a railway

network. The final optimization model is a MIP model that

can be applied to any railway network. We have applied

our optimization model to different instances of a railway

network for a time horizon of six hours. We have found that

for each instance, our model produces an optimal or near-

optimal solution within an acceptable running time, with a

significant increase in the final overlapping time compared

to the existing timetable. Such an increase in the total

overlapping time would make it possible to save considerable

amount of electrical energy by transferring the regenerative

energy of the braking trains to the accelerating ones. As

future work, we would like to develop solution techniques

for large scale instances of the optimization problem. Ad-

ditionally, modifying the current model to perform online

optimization can be of considerable interest.
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