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# Moreau-Yosida regularization, M_f

Proximal algorithm Calafiore

% this is a way  of bounding the hessian 
so in the taylor series the effect of second order terms will be negligible
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# z is a candidate for the x^(k+1), however our \lambda here
is still the \lamda^(k-1) of the previous step, so what we do is keep making 
\lambda smaller until it satisfies the Beck-Teboulle line search condition 
f(z) \leq \hat{f_\lambda}(x,x^k)

# If we have arrived at this line, then for sure the if Beck-Teboulle line search condition was not met i.e. for that 
\lambda the upperboundedness condition is not met
, so we need to make \lambda smaller and then check the line search condition again. Essentially we keep reducing 
\lambda i.e., increasing 1/ 2 \lambda until,                                becomes a majorization at x^k

Beck-Teboulle proximal gradient updater

[  prox ߣ ܫ ߎ =(⊡)  ܥ ܥ (⊡ ]

# Evolution of subgradient method to proximal gradient method:

% this is a way  of bounding the hessian 
so in the taylor series the effect of second order terms will be negligible

#Intuitive Explanation behind Beck line search condition

need to check, however I think it is fine

# In short we are checking if can act as a valid majorization, (From definition it is convex, 

def: majorization

def: majorization

% For a convex function at each iteration we move strictly to the
optimal point because of the convex nature of the function, that is 
why majorization-minmization type function always converges for 
convex optimization problem

, all we 

have to check is the 
upperboundedness
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% At each iteration in ො߮ ,ݔ) ௞൯, x^k is changing, as a result the majorization (the upper bound funciton)ݔ
will also change in shape

[lemma: Underestimation Lemma] #Intuitive Explanation behind Beck line search condition

# Note that if \del f is globally lipschitz, then finding one valid  \lambda  is sufficient, however when f is not so, we 
have to modify it.
Now suppose \del f is not globally lipschitz, even then we can use the condition above locally. Assume \del f is locally 
lipschitz now which implies the derivative is continuous in the relevant domain; this is a much more realistic 
condition. So, no matter what we will have a local Lipschitz constant as we move from on iterate to the next, Beck line 
search essentially does just that: finding an approximation of that local Lipshcitz constant by tuning \lambda at each 
iterate. On the assumption that we have not moved too much from the previous iterate, that is why we apply previous 
\lambda^{k-1} to see if we got lucky and that \lambda still produces a valid upper bound, if not the only possibility is 
that we have to make \lambda smaller thus 1/2 \lambda bigger as we move to another point. From a majorization 
minimization point of view we are tuning \lambda in such a manner that is making \hat{f}_{\lambda}(x,x^k) a 
majorization
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# This also works as a proof that proximal algorithm indeed finds the optimal solution of minimize f(x)+g(x)

# Where to get a valid majorization function at each update
\lambda^{k}=Beck-Teboulle proximal gradient updater(x^k, \lambda^{k-1}, \beta \in (0,1)) if L is not known, or
if L is known \lambda \in (0, 1/L] will work and 

[Forward-backward splitting]
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In a proximal gradient algorithm we do the following:

current iterate
// find the gradient descent schemed next iterate for the smooth function as if the non-smooth function does not exist and we are doing a unconstrained 

thm: proximal operator is the resolvent of subdifferential 
operator

# Arriving at the proximal gradient algorithm from this theorem x^*=(I+\lambda \partial{g})^{-1} (I+\lambda \nabla f) 
(x*)

We know for any monotone operator f, if x^*=f(x^*), then x^* can be found by following iteration:
                                                                          x^{k+1}=f(x^{k})

x^*=(I+\lambda \partial{g})^{-1} (I+\lambda \nabla f) (x*) % Assuming the forward-backward operator is monotone
then the following iteration will converge to x^*

x^{k+1}=(I+\lambda \partial{g})^{-1} (I+\lambda \nabla f) (x^{k})

             =\prox_{\lambda g}{(x^{k}+\lambda \nabla f(x^{k}))} 

[ Forward-Backward Version of Proximal Gradient Method ] [Forward-backward splitting]
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In a proximal gradient algorithm we do the following:

current iterate
// find the gradient descent schemed next iterate for the smooth function as if the non-smooth function does not exist and we are doing a unconstrained 
optimization of that smooth function using gradient descent
// now we proximize that  gradient descent iterate over the nonsmooth function scaled by the step size = next iterate

Accelerated proximal gradient algorithm is is similar to proximal gradient step, except it needs more memory and takes proximizes the gradient descent iterate 
of an intermediate point (which is a linear combination of two previous iterates)

current iterate and the previous iterate
// take a specific linear combination of them = pseudo current iterate
// find the gradient descent schemed next iterate for the smooth function as if the non-smooth function does not exist and we are doing a unconstrained 
optimization of that smooth function using gradient descent
// now we proximize that  gradient descent iterate over the nonsmooth function scaled by the step size = next iterate
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Anthropomorphized: 
ADMM has 3 iterates
u_k is the running sum of the errors in the 1st iterate and the second iterate

both the 1st and 2nd iterates should become same as iterations progress i.e., they become the optimal 
solution

ADMM from Proximal Algorithm

eq: ADMM from prox alg

Remember the underlying optimization problem:

% x is variable of f() so                                             , similarly  z is the variable of g(), so 

Kothay: z^k is the variable of the nonsmooth function 
               x^k is the variable of the smooth function
               as they are essentially the same variable connected with the equality constraint x=z, the difference in x^k and 
z^k will converge to zero. Now u^k is the running sum of the difference.

# Previously in proximal gradient method we handled both of the functions in one forward backward operator action
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[ eq: x^{k+1} ADMM classic to proximal ]
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[ eq: z^{k+1} ADMM classic to proximal ]

[ eq: y^{k+1} =>> u^{k+1} ADMM classic to 
proximal ]

[ eq: x^{k+1} ADMM classic to proximal], 
[ eq: z^{k+1} ADMM classic to proximal
[ eq: y^{k+1} =>> u

1.2 [Boyd] Interpretation of proximal mapping

# Kind of shows the proof that ADMM works:
We are going to show that if  

then the 

x^* term will be the minimizer of f(x)+g(x)
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