
Proximal Algorithm
6:57 PM

 EE 364b Convex Optimization II Page 1

Moreau-Yosida regularization, M_f

Proximal algorithm Calafiore

% this is a way of bounding the hessian
so in the taylor series the effect of second order terms will be negligible

 EE 364b Convex Optimization II Page 2

z is a candidate for the x^(k+1), however our \lambda here
is still the \lamda^(k-1) of the previous step, so what we do is keep making
\lambda smaller until it satisfies the Beck-Teboulle line search condition
f(z) \leq \hat{f_\lambda}(x,x^k)

If we have arrived at this line, then for sure the if Beck-Teboulle line search condition was not met i.e. for that
\lambda the upperboundedness condition is not met
, so we need to make \lambda smaller and then check the line search condition again. Essentially we keep reducing
\lambda i.e., increasing 1/ 2 \lambda until, becomes a majorization at x^k

Beck-Teboulle proximal gradient updater

[prox ߣ ܫ ߎ =(⊡) ܥ ܥ (⊡]

Evolution of subgradient method to proximal gradient method:

% this is a way of bounding the hessian
so in the taylor series the effect of second order terms will be negligible

#Intuitive Explanation behind Beck line search condition

need to check, however I think it is fine

In short we are checking if can act as a valid majorization, (From definition it is convex,

def: majorization

def: majorization

% For a convex function at each iteration we move strictly to the
optimal point because of the convex nature of the function, that is
why majorization-minmization type function always converges for
convex optimization problem

, all we

have to check is the
upperboundedness

 EE 364b Convex Optimization II Page 3

% At each iteration in ො߮ ,ݔ) ௞൯, x^k is changing, as a result the majorization (the upper bound funciton)ݔ
will also change in shape

[lemma: Underestimation Lemma] #Intuitive Explanation behind Beck line search condition

Note that if \del f is globally lipschitz, then finding one valid \lambda is sufficient, however when f is not so, we
have to modify it.
Now suppose \del f is not globally lipschitz, even then we can use the condition above locally. Assume \del f is locally
lipschitz now which implies the derivative is continuous in the relevant domain; this is a much more realistic
condition. So, no matter what we will have a local Lipschitz constant as we move from on iterate to the next, Beck line
search essentially does just that: finding an approximation of that local Lipshcitz constant by tuning \lambda at each
iterate. On the assumption that we have not moved too much from the previous iterate, that is why we apply previous
\lambda^{k-1} to see if we got lucky and that \lambda still produces a valid upper bound, if not the only possibility is
that we have to make \lambda smaller thus 1/2 \lambda bigger as we move to another point. From a majorization
minimization point of view we are tuning \lambda in such a manner that is making \hat{f}_{\lambda}(x,x^k) a
majorization

 EE 364b Convex Optimization II Page 4

This also works as a proof that proximal algorithm indeed finds the optimal solution of minimize f(x)+g(x)

Where to get a valid majorization function at each update
\lambda^{k}=Beck-Teboulle proximal gradient updater(x^k, \lambda^{k-1}, \beta \in (0,1)) if L is not known, or
if L is known \lambda \in (0, 1/L] will work and

[Forward-backward splitting]

 EE 364b Convex Optimization II Page 5

In a proximal gradient algorithm we do the following:

current iterate
// find the gradient descent schemed next iterate for the smooth function as if the non-smooth function does not exist and we are doing a unconstrained

thm: proximal operator is the resolvent of subdifferential
operator

Arriving at the proximal gradient algorithm from this theorem x^*=(I+\lambda \partial{g})^{-1} (I+\lambda \nabla f)
(x*)

We know for any monotone operator f, if x^*=f(x^*), then x^* can be found by following iteration:
 x^{k+1}=f(x^{k})

x^*=(I+\lambda \partial{g})^{-1} (I+\lambda \nabla f) (x*) % Assuming the forward-backward operator is monotone
then the following iteration will converge to x^*

x^{k+1}=(I+\lambda \partial{g})^{-1} (I+\lambda \nabla f) (x^{k})

 =\prox_{\lambda g}{(x^{k}+\lambda \nabla f(x^{k}))}

[Forward-Backward Version of Proximal Gradient Method] [Forward-backward splitting]

 EE 364b Convex Optimization II Page 6

In a proximal gradient algorithm we do the following:

current iterate
// find the gradient descent schemed next iterate for the smooth function as if the non-smooth function does not exist and we are doing a unconstrained
optimization of that smooth function using gradient descent
// now we proximize that gradient descent iterate over the nonsmooth function scaled by the step size = next iterate

Accelerated proximal gradient algorithm is is similar to proximal gradient step, except it needs more memory and takes proximizes the gradient descent iterate
of an intermediate point (which is a linear combination of two previous iterates)

current iterate and the previous iterate
// take a specific linear combination of them = pseudo current iterate
// find the gradient descent schemed next iterate for the smooth function as if the non-smooth function does not exist and we are doing a unconstrained
optimization of that smooth function using gradient descent
// now we proximize that gradient descent iterate over the nonsmooth function scaled by the step size = next iterate

 EE 364b Convex Optimization II Page 7

Anthropomorphized:
ADMM has 3 iterates
u_k is the running sum of the errors in the 1st iterate and the second iterate

both the 1st and 2nd iterates should become same as iterations progress i.e., they become the optimal
solution

ADMM from Proximal Algorithm

eq: ADMM from prox alg

Remember the underlying optimization problem:

% x is variable of f() so , similarly z is the variable of g(), so

Kothay: z^k is the variable of the nonsmooth function
 x^k is the variable of the smooth function
 as they are essentially the same variable connected with the equality constraint x=z, the difference in x^k and
z^k will converge to zero. Now u^k is the running sum of the difference.

Previously in proximal gradient method we handled both of the functions in one forward backward operator action

 EE 364b Convex Optimization II Page 8

 EE 364b Convex Optimization II Page 9

 EE 364b Convex Optimization II Page 10

[eq: x^{k+1} ADMM classic to proximal]

 EE 364b Convex Optimization II Page 11

[eq: z^{k+1} ADMM classic to proximal]

[eq: y^{k+1} =>> u^{k+1} ADMM classic to
proximal]

[eq: x^{k+1} ADMM classic to proximal],
[eq: z^{k+1} ADMM classic to proximal
[eq: y^{k+1} =>> u

1.2 [Boyd] Interpretation of proximal mapping

Kind of shows the proof that ADMM works:
We are going to show that if

then the

x^* term will be the minimizer of f(x)+g(x)

 EE 364b Convex Optimization II Page 12

 EE 364b Convex Optimization II Page 13

