
Lipschitz mapping, (e.g., nonexpansive and contraction mapping) is a function

# composition of nonexpansive (contraction) mapping is nonexpansive (contraction) mapping

of Lipschitz function

So convex combination of two nonexpansive mapping is nonexpansive.

So strict convex combination of one expansive mapping and one contraction mapping is contraction 
mapping

So fixed point set of a nonexpansive operator is essentially 0 passed through the resolvent of that operator
# Note the scaling factor of the operator is -1

# For any affine function the maximum singular value of the associated matrix is the Lipschitz constant 
of that function!

A differentiable function is Lipschitz iif the Jacobian norm of the function is globally bounded by the associated Lipschitz constant.

% So  for a differentiable and continuous function in some interval, there exists 
a intermediate point where the slope of the function is equal to the relative 
increase of the function over the interval

% If there are two lovers in real world and one projection set symbolizing the fantasy world, then the 
distance between the lovers will be smaller in the fantasy world than that of the real world.

# From proximal algorithm we already know that fixed point of operators are important,
recall minimizer of f(x) is the fixed point of the proximal operator, i.e., x ∗=prox ௙(x ∗)

objective strongly convex bole
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# Intuition of monotone operator: let us start with scalar function: 

For that case monotone function is if input argument increases, the function value increases, and vice 
versa one way of quantifying that is :

Now for imposing that as a definition we want this to be true for all         pair, so we can give the 
definition :

Now let's extend this for vector valued case, as vectors are partial ordered we cannot just start with
                                            
                                however look at the scalar case                                                and trying to 

extend it point wise for a vector case: 

What might be an intuition of this? Well it means that in some element of the vector the monotone 
operator is results in a such scalar monotonic behavior to balance any non-monotonic behavior in other 
elements. For a 2d case, 

So if the first term gets negative for some x,y, then the other terms will counter it by getting strongly 
positive

                                

[ eq: Sum of relations ]

def: monotone operator

[ eq: inverse of monotone = monotone ]

[ eq: sum of monotone is monotone ]

def: monotone operators definitions and related

def: maximal monotone

This is the first order optimality condition.

So monotone operator always split out vector of same dimension as the input argument.

# Caution: nonexpansive and contraction mapping are function, but monotone or strongly 
monotone operator can be nontrivial relations.

this is montone, if we modify the notation as follows:

maximal 
monotone

# What does that mean? It means that: inverse of a strongly monotone operator (which may be a 
nontrivial relation) is a function (as any relation with a Lipschitz constant is a function) which is freaking 
amazing.

Some interior points of one relation domain has to belong to the other relation domain
# Additivity of maximal monotone operator with fine print

# Positive scalar multiplicatively of (maximal) monotone operator 
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def: CCP

def: monotone operator

[ eq: congruence of monotone = monotone ]

normal cone operator

definition of monotone operator: 

However it turns out that (Ernest told me) maximality is indeed needed for proposing efficient algorithm. for example, for nonconvex function too
subdifferential operator is monotone but not maximally monotone. So if     is a nonconvex function, then                                                                                       

                                                                                                 
                                                                                                 but the converse is not true, 

# This proof just needs convexity, closed-ness and properness is not needed
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[ eq: subdiffernetial is monotone mapping ]

[ eq: subdiffernetial is monotone mapping ]

[ eq: inverse of monotone = monotone ]

[ eq: congruence of monotone = monotone ]

kenona shokol y er jonno def ti khate hobe bole, min[0,\infty]=0 bibechona korlei cholbe,
equivalently kebol y \in C bibechona korlei cholbe, as in the lhs, we are considering only y \in C er 
corresponding I_C( . ) value.

def: multiplier to residual mapping

# The intuition behind this is that remember at the boundary of any function, the subdifferential might 
not exist. One strange function in this regard is the                               function of a convex set            

Makes sense because remember  for any convex function the subdifferential
always exists in the int(dom f). At the boundary the subdifferential may not exist, i.e,
                              
                               might not exist, as a result 

But remember for at all the interior points, 

# Multiplier to residual mapping is very important as it has a connection with ADMM

Not the most rigorous proof …

# Manuscript version

Note that this is an equality constrained optimization problem,
so it will have only these two KKT conditions with RHS zero and the LHS I
given by the rows of the KKT operator. So if the optimal (x*,y*) is inputted through the KKT operator 
then we will have zero.

So optimal primal dual pair will belong to the output set of the inverse KKT operator with 0 fed into it!

This F is called 
multiplier to residual mapping,
because it takes the lagrange
multiplier and outputs the residue
that associated with the 
sub-optimality of x.
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[ eq: sum of monotone is monotone ]
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